TY - CONF A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Weigert, Florian A1 - Frenzel, Florian A1 - Andresen, Elina A1 - Würth, Christian T1 - Luminescent Nanoparticles – From Photophysics to the Measurement of Photoluminescence Quantum Yields N2 - Inorganic nanocrystals with linear and nonlinear photoluminescence in the ultraviolet, visible, near infrared and short-wave infrared like spectrally shifting lanthanide-based nanoparticles (LnNCs) like NaYF4: Yb, Er and semiconductor quantum dots have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. The identification of optimum particle architectures for photonic applications requires quantitative spectroscopic studies, ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods. In the following, photoluminescence studies of LnNCs are presented, addressing parameters such as particle size, surface coating, and dopant ion concentration as well as excitation power density mandatory for a profound mechanistic understanding of the nonradiative deactivation pathways in these nanocrystals. In addition, methods for the determination of particle brightness and photoluminescence quantum yield in different spectral windows are presented. T2 - Phoenix Colloquium CY - Hannover, Germany DA - 22.06.2023 KW - Semiconductor quantum dot KW - Upconversation nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material KW - Surface analysis KW - Quantification PY - 2023 AN - OPUS4-57797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -