TY - CONF A1 - Carstensen, Niels A1 - Schirdewahn, S. A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - Generation of Tribosystems by Additive Surface Treatment on Tool Steel Substrate N2 - Laser implantation aims at reducing friction and wear on highly stressed surfaces in forming processes. Especially the hot stamping process that is used as a resource efficient process for manufacturing geometrical complex and high-strength structures, exhibits severe wear and high friction during the forming operation. The laser implantation process addresses this problem by combining two different approaches (surface modification and surface structuring) in surface technology by creating elevated, highly wear-resistant micro-features to influence the tribological performance. Pure TiB2 implants have shown to reduce tool-sided wear significally and improve the part formability by reducing local necking in deep drawing tests. Within the scope of this work, TiB2-TiC and TiB2-TaC hard material mixtures are implanted on X38CrMoV5-3 hot work tool steel. The aim is to investigate how the implant material properties can be influenced by the application of different mixing ratios of hard material mixtures under the specific variation of the process parameters. Distinct implant formations are tested on a novel test apparatus to examine the influence on the tribological properties. From the analyses of the implant properties by hardness measurements, light microscopic images, EDX and XRD analyses process parameter ranges are identified to produce defect-free dome- and ring-shaped implants. The specific process parameters (pulse power, pulse duration, mixing ratio and coating thickness) can be used for the determination of the implant geometry (height, width and depth). The tribological tests exhibit improved friction and wear properties. Based on these results, a tribosystem manufactured by this additive surface treatment technology shows great potential to enhance the effectiveness of the hot stamping process. T2 - Friction 2021 CY - Sankt Augustin, Germany DA - 18.11.2021 KW - Laser implantation KW - Surface modification KW - Additive surface treatment KW - Hot stamping KW - Tool steel PY - 2021 AN - OPUS4-53809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -