TY - GEN A1 - Schilling, Markus T1 - An optical criterion for the assessment of Full-Notch Creep Test (FNCT) fracture surfaces N2 - The full-notch creep test (FNCT) is a common method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD) container materials . The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of specimens mechanically loaded in a well-defined liquid environment. Since the craze-crack damage mechanism underlying the ESC process is associated with brittle failure, the occurrence of globally brittle fracture surfaces is a prerequisite to consider an FNCT measurement as representative for ESC . Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. Due to the experimental setup, an inevitable increase of the true mechanical stress and the associated appearance of small ductile parts on fracture surfaces is induced in any case. Hence, an FNCT experiment is considered as 'valid', if the corresponding fracture surface is predominantly brittle . Based on laser scanning microscopy (LSM) height data of FNCT fracture surfaces , a universal and easy-to-use phenomenological criterion was developed to assess the validity of distinct FNCT experiments. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. T2 - PPS Europe-Africa 2019 Regional Conference (PPS 2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Full-Notch Creep Test (FNCT) KW - Polyethylene, PE-HD KW - Fracture surface analysis KW - Environmental stress cracking (ESC) KW - Optical criterion KW - Brittle fracture PY - 2019 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/50940 AN - OPUS4-50940 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany