TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Cieslik, K. A1 - Mory, D. A1 - Griesche, Axel T1 - In situ chemical composition analysis of a tungsten-inert-gas austenitic stainless steel weld measured by laser-induced breakdown spectroscopy T2 - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - The chemical composition of a weld metal determines the resulting solidification mode of stainless steel and the consequent weld metal quality. In this work tungsten inert gas (TIG) welding of EN grade 1.4435 austenitic stainless steel was monitored using laser-induced breakdown spectroscopy (LIBS) for the in situ measurement of chemical composition changes. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such quality control loop. LIBS was used to investigate in situ the monitoring of metal vaporization during TIG welding. We found Mn vapor formation above the weld pool and subsequent condensation of Mn on the weld metal surface using LIBS. Post-weld line scans were conducted by LIBS on various welds produced with different welding currents. Local changes of Ni and Mn were observed at higher welding currents. The results are in good agreement with the literature and proved that LIBS can be used in situ to inspect the TIG welding process. PB - Elsevier B.V. CY - Amsterdam, Niederlande T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czechia DA - 08.09.2019 KW - LIBS KW - Welding KW - Austenitic stainless steel KW - Metal vapor KW - In situ measurement PY - 2020 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/50582 AN - OPUS4-50582 SN - 0584-8547 VL - 167 SP - 105826 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany