TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Degradation of AISI 630 exposed to CO2-saturated saline aquifer at ambient pressure and 100 bar T2 - Journal of applied sciences research N2 - In general high alloyed steels are suitable as pipe steels for carbon capture and storage technology (CCS), because they provide sufficient resistance against the corrosive environment of CO2-saturated saline aquifer which serves as potential CCS-site in Germany. High alloyed martensitic steel AISI 630 has been proven to be sufficient resistant in corrosive environments, e.g. regarding heat, pressure, salinity of the aquifer, CO2-partial pressure), but reveals a distinct corrosion pattern in CCS environment. Therefore coupons of AISI 630 heat treated using usual protocols were kept at T=60 °C and ambient pressure as well as p=100 bar up to 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. AISI 630 precipitates a discontinuous ellipsoidal corrosion layer after being exposed for more than 4000 hours. Best corrosion resistance in the CO2-saturated synthetic aquifer environment phase is achieved via normalizing prior to exposure. In water saturated supercritical CO2 tempering at medium temperatures after hardening gives lowest corrosion rates. Corrosion fatigue via push-pull tests with a series of 30 specimens was evaluated at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). The endurance limit of AISI 630 is reduced by more than 50% when exposed to CCS environment (maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa). PB - INSInet Publications CY - Faisalabad KW - Corrosion Fatigue KW - High Cycle Fatigue KW - Steel KW - Ccs KW - Co2-Storage PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/50378 AN - OPUS4-50378 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503783 SN - 1819-544X SN - 1816-157X SP - 11 EP - 17 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany