TY - GEN A1 - Falkenhagen, Jana T1 - View into the depths of copolymer microstructure by a special approach of LC-MS data evaluation N2 - It is a well-known story that copolymers beside their molar mass distribution (MMD) can exhibit a functionality type distribution (FTD), a copolymer composition distribution (CCD), a monomer sequence distribution (MSD) and additionally different topologies within one sample. This is and will remain a challenge for analysts. First a very short overview will be given concerning the common liquid separation techniques for polymers (SEC, LAC, LCCC, GELC) coupled to soft ionization mass spectrometric methods like MALDI and ESI-MS with focus on their limitations. For very broadly distributed samples or chemical very similar species the superposition of different separation mechanisms in chromatography is unavoidable or the separation efficiency cannot be optimized. Different ionization probabilities and species of the same nominal mass with completely different structures are just two problems of mass spec of complex polymer mixtures. Subsequently, different examples will be shown how these limitations in some cases could be outsmarted. First example will be the separation of statistical EO-PO copolymers of different chemical compositions by end group functionality and the quantification of end group fractions over the whole CCD. Here an UP-LCCC / ESI-TOF-MS coupling is applied. Further for different kinds of polymers it will be shown how it could be realized to obtain information on small isobaric/isomeric topological heterogeneities by coupling UP-SEC / ESI-TOF-MS. All results are based on the data processing of reconstructed ion chromatograms of single mass traces of complex ESI-MS spectra. T2 - SCM-9 CY - Amsterdam, The Netherlands DA - 29.01.2019 KW - Reconstructed ion chromatograms KW - Copolymer KW - Microstructure KW - LC x ESI-TOF-MS PY - 2019 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/47836 AN - OPUS4-47836 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany