TY - JOUR A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Exploring the correlation between subsurface residual stresses and manufacturing parameters in laser powder bed fused Ti-6Al-4V T2 - Metals N2 - Subsurface residual stresses (RS) were investigated in Ti-6Al-4V cuboid samples by means of X-ray synchrotron diffraction. The samples were manufactured by laser powder bed fusion (LPBF) applying different processing parameters, not commonly considered in open literature, in order to assess their influence on RS state. While investigating the effect of process parameters used for the calculation of volumetric energy density (such as laser velocity, laser power and hatch distance), we observed that an increase of energy density led to a decrease of RS, although not to the same extent for every parameter variation. Additionally, the effect of support structure, sample roughness and LPBF machine effects potentially coming from Ar flow were studied. We observed no influence of support structure on subsurface RS while the orientation with respect to Ar flow showed to have an impact on RS.We conclude recommending monitoring such parameters to improve part reliability and reproducibility. PB - MDPI KW - Additive manufacturing KW - Synchrotron X-ray diffraction KW - Residual stress KW - Ti-6Al-4V PY - 2019 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/47428 AN - OPUS4-47428 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474281 SN - 2075-4701 VL - 9 IS - 2 SP - 261, 1 EP - 13 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany