TY - CONF A1 - Saatz, Jessica A1 - Grunert, Bianca A1 - Jakubowski, Norbert T1 - Nanocrystals as labeling reagents for imaging mass cytometry N2 - Imaging of elemental distributions in single cell assays as well as tissue sections can be performed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This powerful technique offers precise spatially resolved measurements at trace and ultratrace levels and has been established as an excellent tool to answer analytical, biological and biomedical questions. To date, mass cytometry is already able to simultaneously detect up to 40 cellular targets due to conjugation of isotopically pure lanthanides to affinity binders, e.g. antibodies. To further enhance the ability of multiparametric analysis to more than 100 analytes at once, we investigated lanthanide nanocrystals as new, highly sensitive metal tags for identification of targets in clinical cell assays and tissue samples. Multiparametric analysis will be possible by encoding the lanthanide composition of nanocrystals associated to the affinity binders. Nanocrystals showed remarkable potential for sensitive detection in MS due to high stability and signal amplification compared to e.g. polymer tags, carrying fewer metal atoms. Furthermore, the nanocrystals allow multimodal imaging due fluorescence of Eu3+ as well as contrast enhancing properties of Gd3+ in magnetic resonance imaging. Synthesis of functionalized lanthanide nanocrystals for further bioconjugation was performed with high reproducibility and monodisperse size distribution. For proof of principle, the uptake and distribution of these nanocrystals within the monolayered cell line A549 were investigated by mapping the intensities at subcellular resolution using LA-ICP-MS. It could be shown, that the cells were efficiently labeled with the nanocrystals. Additionally, the bioconjugation of the nanocrystals to antibodies and particularly the preservation of the antibody specificity was investigated using Dot Blot experiments. All in all, the results imply high sensitivity and the possibility of multiparametric analysis by doting various lanthanides into the nanocrystals. T2 - Bioimaging Workshop BI(MS)2 CY - Münster, Germany DA - 24.05.2018 KW - Bioimaging KW - Nanoparticle KW - LA-ICP-MS KW - Lanthanide PY - 2018 AN - OPUS4-45867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -