TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC-based cermets: influence of secondary carbide addition and metal binder T2 - Proceedings of the International Symposium on Wear Resistant Alloy for the Mining and Processing Industry N2 - Full densification of Fe, Co and Ni bonded NbC based cermet’s was achieved by pressure less liquid phase sintering in vacuum for one hour at 1420°C. The hardness and toughness of the NbC matrix cermet’s can be mainly tailored by the binder composition and secondary carbide additions. Ni binder based NbC cermet’s allow the combination of high hardness and improved toughness. The addition of lesser amounts of VC/Cr3C2 in a NbC partially substituted WC-Co cemented carbide increased significantly the hardness in combination with a moderate fracture toughness. T2 - International Symposium on Wear Resistant Alloys for the Mining and Processing Industry CY - Sao Paulo, Brazil DA - 04.05.2015 KW - Niobium carbide KW - Hardmetal KW - Cemented carbide KW - Sintering KW - Grain growth KW - Microstructure KW - Hardness KW - Fracture toughness PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/44206 AN - OPUS4-44206 SN - 978-0-692-05382-9 SP - 521 EP - 534 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany