TY - GEN A1 - Guhl, Svetlana T1 - Online NMR Spectroscopy for Process Monitoring in Intensified Continuous Production Plants N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-to-aliphatic conversions or isomerizations occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - EuroPACT 2017 CY - Potsdam, Germany DA - 10.05.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Process analytical technology KW - Hydrogenation KW - Indirect Hard Modeling KW - CONSENS PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/43550 AN - OPUS4-43550 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435507 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany