TY - CONF A1 - Shirshova, N. A1 - Bismarck, A. A1 - Carreyette, S. A1 - Greenhalgh, E.S. A1 - Johansson, P. A1 - Marczewski, M.J. A1 - Jacobsson, P. A1 - Kalinka, Gerhard A1 - Shaffer, M.S.P. A1 - Wienrich, Malte A1 - Steinke, J.H.G. T1 - Correlations between mechanical properties and ionic conduction of structural electrolytes with bicontinuous morphologies T2 - ICCM19 - 19th International conference on composite materials (Proceedings) N2 - Electrolyte systems that can carry mechanical load while allowing for high levels of ionic conductivity are an important prerequisite for structural power storage devices. Introduction of structural power storage into the variety of consumer products will allow saving in weight and volume. Moreover, using a supercapacitor/battery system in hybrid electric vehicles (HEV), the supercapacitor part will extend the battery lifetime by protecting it from the high peak currents. To successfully produce structural power storage requires the development of multifunctional electrolytes where one has to simultaneously maximize mechanical properties and ionic conductivity. T2 - ICCM19 - 19th International conference on composite materials CY - Montreal, Canada DA - 28.07.2013 KW - Structural electrolyte KW - Multifunctional supercapacitor KW - Bicontinuous morphology KW - Epoxy resin KW - Ionic conductivity KW - Mechanical properties PY - 2013 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/29273 AN - OPUS4-29273 SP - 72 EP - 79 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany