In this work we apply various concepts of mechanism reduction with a PDF based method for species profile
conservation. The reduction process is kept time efficient by only using 0D and 1D reactors. To account for the expansion phase in internal combustion engines a stochastic engine tool is used to validate the reduction steps.
In this work we apply a sequence of concepts for mechanism reduction on one reaction mechanism including novel quality control. We introduce a moment based accuracy rating method for species profiles. The concept is used for a necessity based mechanism reduction utilizing 0D reactors. Thereafter a stochastic reactor model (SRM) for internal combustion engines is applied to control the quality of the reduced reaction mechanism during the expansion phase of the engine. This phase is sensitive on engine out emissions, and is often not considered in mechanism reduction work. The proposed process allows to compile highly reduced reaction schemes for CFD application for internal combustion engine simulations. It is demonstrated that the resulting reduced mechanisms predict combustion and emission formation in engines with accuracies comparable to the original detailed scheme.
In this work, we apply a sequence of concepts for mechanism reduction on one reaction mechanism including novel quality control. We introduce a moment-based accuracy rating method for species profiles. The concept is used for a necessity-based mechanism reduction utilizing 0D reactors. Thereafter a stochastic reactor model for internal combustion engines is applied to control the quality of the reduced reaction mechanism during the expansion phase of the engine. This phase is sensitive on engine out emissions, and is often not considered in mechanism reduction work. The proposed process allows to compile highly reduced reaction schemes for computational fluid dynamics application for internal combustion engine simulations. It is demonstrated that the resulting reduced mechanisms predict combustion and emission formation in engines with accuracies comparable to the original detailed scheme.
The present study describes the utilization of a reaction mechanism generator for the development of chemical kinetic models. The aim of the investigation is twofold. The in-house developed mechanism generator is updated with reaction classes reported in the literature, and the effect of the lower hydrocarbon chemistry, that is, base chemistry, on the generation process is assessed. For this purpose, the algorithm is implemented on two different base chemistry mechanisms, that have previously been validated against a different range of hydrocarbons, that is, the mechanisms of the groups coauthoring the study. n-Hexane has been used as a modeling target due to its important role in combustion studies as a surrogate for engine and aviation applications. The steps of the generation process are given in detail as this is the first time the current algorithm is utilized. The two generated mechanisms are compared against speciation data, ignition delay times, and flame velocities from the literature. The overall agreement of the generated mechanisms is satisfying; discrepancies exist in the negative temperature coefficient regime. Reaction path analysis and sensitivity analysis were performed, revealing the reactions that cause the different mechanism performance. Among others, the study reveals that the generated schemes pose a fast and adequate alternative to literature mechanisms; it is however evident that the latter may include more detailed reaction paths and are therefore superior in terms of validation.