Refine
Document Type
Way of publication
- Open Access (3)
Language
- English (18)
Keywords
- Kinetic modeling (5)
- Ammonia (4)
- Laminar flame speed (4)
- Ignition delay time (3)
- NOx (3)
- DME (2)
- Diethyl ether (2)
- Dimethoxymethane (2)
- Dimethyl ether (2)
- 2-methyl tetrahydrofuran (1)
Institute
BTU
The reaction of NH2 radicals with C3H8 is crucial for understanding the combustion behavior of NH3/C3H8 blends. In this study, we investigated the temperature dependence of the rate coefficients for the hydrogen abstraction reactions of C3H8 by NH2 radicals using high-level theoretical approaches. The potential energy surface was constructed at the CCSD(T)/cc-pV(T, Q)//M06-2X/aug-cc-pVTZ level of theory, and the rate coefficients were computed using conventional transition state theory, incorporating the corrections for quantum tunneling and hindered internal rotors (HIR). The computed rate coefficients showed a strong curvature in the Arrhenius behavior, capturing the experimental literature data well at low temperatures. However, at T > 1500 K, the theory severely overpredicted the experimental data. The available theoretical studies did not align with the experiment at high temperatures, and the possible reasons for this discrepancy are discussed. At 300 K, the reaction of NH2 with C3H8 predominantly occurs at the secondary C-H site, which accounts for approximately 95% of the total reaction flux. However, the hydrogen abstraction reaction at the primary C-H site becomes the dominant reaction above 1700 K. A composite kinetic model was built, which incorporated the computed rate coefficients for NH2 + C3H8 reactions. The importance of NH2 + C3H8 reactions in predicting the combustion behavior of NH3/C3H8 blends was demonstrated by kinetic modeling.
The reactions of amino radicals (NH2) play a vital role in governing the combustion behaviour of various nitrogen-rich chemical systems such as ammonia, coal nitrogen gasification, and biomass. Ammonia has recently gained considerable attention in the combustion community. Since it is a carbon-free fuel, it can help combat global warming by decarbonizing the energy sectors. However, several reports in the literature highlight the importance of the NH3-dual fuel approach to boost the combustion properties of neat ammonia. For combustion modeling of NH3-dual fuel systems, accurate knowledge of the cross-reactions between the nitrogen and carbon family is very critical. Several earlier studies have shown the influence of NH2 radical reactions with the fuel (combustion promoter) in accurately predicting the low- temperature combustion behaviour of NH3-dual fuels (see Giri et al. and references cited therein). The reactions of NH2 radicals are not only important in the combustion environment but also, they are relevant to the chemistry of planetary atmospheres.
In this work, we investigated the hydrogen abstraction reactions of NH2 radials with dimethyl ether (DME) and diethyl ether (DEE) using a high-level quantum method combined with the statistical rate theory. We implemented the derived rate coefficients in our kinetic model to identify its effect in the combustion modeling of NH3-DME/DEE blends.
Reaction kinetics of NH₂ with H₂CO and CH₃CHO : modeling implications for NH₃‐dual fuel blends
(2025)
Carbon‐free fuels like ammonia (NH₃) and hydrogen (H₂) offer significant potential in combating global warming by reducing greenhouse gas emissions and moving toward zero carbon emissions. Over the past few years, our research has focused on understanding the combustion behavior of carbon‐neutral and carbon‐free fuels. In particular, we have explored the combustion characteristics of NH₃ when blended with various hydrocarbons and oxygenates. Our investigation revealed that carbon‐nitrogen cross‐chemistry plays a crucial role in shaping the combustion properties of NH3‐hydrocarbon/oxygenate blends. Specifically, the chemistry of amino (NH₂) radicals is vital in influencing the low‐temperature reactivity of these blends. Understanding the interactions between carbon and nitrogen is essential for optimizing combustion processes and improving the emissions profile of NH₃‐based fuels. Recognizing the significance of this cross‐chemistry, we investigated the reaction kinetics of NH₂ radicals with formaldehyde (H₂CO) and acetaldehyde (CH₃CHO) using high‐level ab initio and transition state theory calculations. We computed the potential energy profiles of these reactions at the CCSD(T)/CBS//M06‐2X/aug‐cc‐pVTZ level of theory to analyze the reactivity of NH2 radicals at various C─H bond sites. The newly derived rate constants have proven to be highly sensitive for modeling the low‐temperature oxidation of NH₃‐dual fuel blends, significantly enhancing the predictive accuracy of our previously published kinetic models. This work offers valuable insights into the role of NH₂ radicals, thereby advancing the development of NH₃‐dual fuel systems.
Ammonia (NH₃) and hydrogen (H₂) have emerged as promising carbon‐free fuels to help mitigate global warming by reducing greenhouse gas emissions. Our ongoing research currently focuses on understanding the combustion characteristics of NH₃ blends with oxygenates and hydrocarbons, uncovering the critical role of carbon–nitrogen cross‐reactions in accurately modeling their combustion behavior. Amino (NH₂) radicals, which are abundant in ammonia and nitrogen‐rich environments, strongly influence the low‐temperature reactivity of NH₃‐hydrocarbon/oxygenate mixtures, affecting overall reactivity and emission characteristics. Recognizing the importance of NH₂ radicals, we investigated the reaction kinetics of NH₂ with dimethyl ether (DME, CH₃OCH₃) and diethyl ether (DEE, CH₃CH₂OCH₂CH₃) using appropriate high‐level ab initio and statistical rate theory methods. We computed the potential energy profiles at the CCSD(T)/cc‐pV(T, Q)Z//M06‐2X/aug‐cc‐pVTZ level of theory, analyzing the reactivity of NH₂ radicals at various C─H sites of these diethers. Incorporating these newly derived rate parameters, our updated kinetic model successfully captures previous experimental data, addressing the modeling challenges encountered in our earlier studies. Our findings, including insights into the impact of NH₂ radicals, contribute to an understanding of ammonia combustion and its potential in achieving carbon‐neutral energy systems.
Laminar flame speeds of dimethyl ether and dimethoxymethane at pressures from 1 to 5 bar and initial temperatures from 298 to 373 K were determined experimentally using a constant volume spherical vessel and a heat flux burner setup. This study is the first to report dimethoxymethane laminar flame speeds at a pressure higher than 1 bar. Using these experimental data along with data available in the literature, a new kinetic model for the prediction of the oxidation behavior of dimethyl ether and dimethoxymethane in freely propagating and burner stabilized premixed flames, in shock tubes, rapid compression machines, flow reactors, and a jet-stirred reactor has been developed. The experimental results from the present work and literature are interpreted with the help of the derived kinetic model. This newly developed reaction mechanism considers the redox chemistry of NOx to accommodate the influence of the oxygen level on the onset of fuel conversion and interconversion of NO and NO2. The current model suggests that an increased O2 level promotes the HO2 production, which in turn leads to the formation of OH radicals, which promotes the combustion of the fuel/air mixture under lean conditions. The increase of OH radical concentrations is mainly via the NO/NO2 interconversion reaction channel, NO+HO2=NO2+OH, NO2+H=NO+OH, CH3OCH3+NO2=CH3OCH2+HONO, followed by the thermal decomposition of HONO. This work extends the kinetic database and helps to improve the understanding of dimethyl ether and dimethoxymethane combustion behavior. The kinetic model presented in this work can serve as a base model for hydrocarbons and oxygenated fuels higher than C2.
Ammonia (NH3) is recognized as a carbon-free hydrogen-carrier fuel with a high content of hydrogen atoms per unit volume. Recently, ammonia has received increasing attention as a promising alternative fuel for internal combustion engine and gas turbine applications. However, the viability of ammonia fueling future combustion devices has several barriers to overcome. To overcome the challenge of its low reactivity, it is proposed to blend it with a high-reactivity fuel. In this work, we have investigated the combustion characteristics of ammonia/diethyl ether (NH3/DEE) blends using a rapid compression machine (RCM) and a constant volume spherical reactor (CVSR). Ignition delay times (IDTs) of NH3/DEE blends were measured using the RCM over a temperature range of 620 to 942 K, pressures near 20 and 40 bar, equivalence ratios (Φ) of 1 and 0.5, and a range of mole fractions of DEE, χDEE, from 0.05 to 0.2 (DEE/NH3 = 5 – 20%). Laminar burning velocities of NH3/DEE premixed flames were measured using the CVSR at 298 K, 1 bar, Φ of 0.9 to 1.3, and χDEE from 0.1 to 0.4. Our results indicate that DEE promotes the reactivity of fuel blends resulting in significant shortening of the ignition delay times of ammonia under RCM conditions. IDTs expectedly exhibited strong dependence on pressure and equivalence ratio for a given blend. Laminar burning velocity was found to increase with increasing fraction of DEE. The burnt gas Markstein length increased with equivalence ratio for χDEE = 0.1 as seen in NH3-air flames, while the opposite evolution of Markstein length was observed with Φ for 0.1 < χDEE ≤ 0.4, as observed in isooctane-air flames. A detailed chemical kinetics model was assembled to analyze and understand the combustion characteristics of NH3/DEE blends.
Ammonia (NH3) is considered a promising carbon-neutral fuel, with a high hydrogen content, that can diversify the global energy system. Blending ammonia with a highly reactive fuel is one possible strategy to enhance its combustion characteristics. Here, an investigation of blends of NH3 and dimethoxymethane (DMM), a biofuel with high fuel-born oxygen content and no carbon–carbon bonds, is reported. Unstretched laminar burning velocity (SL) and Markstein length of different NH3/DMM blends were experimentally determined using spherically propagating premixed flames. The DMM mole fraction was varied from 0.2 to 0.6 while measuring SL at 298 K, 0.1 MPa, and equivalence ratios (Φ) over the range of 0.8–1.3. The addition of DMM was found to immensely enhance the combustion characteristics of ammonia. DMM 20% (by mole fraction) in the NH3/DMM blend increased SL by more than a factor of 3 over neat ammonia; such enhancement was found to be comparable to 60% CH4 in NH3 (Φ = 0.9–1.1) blends. Increasing Φ was found to significantly decrease the burned gas Markstein length for lean cases, whereas a negligible effect was observed for rich mixtures. A composite chemical kinetic model of DMM/NH3, aimed at interpreting the high-temperature combustion chemistry, was able to reliably predict SL for neat NH3 and DMM flames. Also, the predictive capability of the kinetic model to describe SL for DMM/NH3 blends is reasonably good. Sensitivity analysis and reaction path analysis indicated that the NH3/DMM blends could be understood as dual oxidation processes of the individual fuels that are competing for the same radical pool.
This work entails a detailed modeling and experimental study for the oxidation kinetics of acetaldehyde (CH3CHO) and its interaction with NOx. The ignition behavior of CH3CHO/O2/Ar has been investigated in a shock tube over the temperature range of 1149 to 1542 K, with equivalence ratios of 0.5 and 1.0 and pressures near 1.2 bar. Absorbance−time profiles of acetaldehyde were recorded using a mid-IR laser during the autoignition measurements. A comprehensive kinetic model has been developed to quantitatively predict the oxidation of
acetaldehyde and its interaction with NOx. The kinetic model
has been validated using experimental data of this work and
available literature data from shock tube, plug flow, and jet-stirred
reactors, freely propagating, and burner-stabilized premixed flames. For better accuracy of the kinetic model, the thermochemistry of
14 important species in the acetaldehyde submechanism was calculated using ab initio methods. The heat of formation of these
species was computed using atomization and isodesmic reaction schemes. For the first time, this modeling study examines the effect
of NO on acetaldehyde oxidation behavior over a wide range of experimental conditions. In most cases, the proposed kinetic model
captures the experimental trends remarkably well. Interestingly, the doping of NO in CH3CHO did not perturb the NTC behavior of
CH3CHO in contrast to other fuels, such as n-heptane and dimethyl ether. However, for flow reactor conditions at 1 atm, doping
with 504 ppm of NO was found to promote the reactivity of acetaldehyde by lowering the onset temperature for CH3CHO oxidation
by ∼140 K. The hydroxyl radical is the main cause of this shift, which originates from the NO + HO2 = OH + NO2 reaction. Further
evolution of hydroxyl radicals occurs via the “NO−NO2” looping mechanism and expedites the reactivity of the system. This
experimental and modeling work sheds new light on acetaldehyde oxidation behavior and its interaction with NOx under
combustion-relevant conditions.
Ammonia (NH3) has recently received much attention as a promising future fuel for mobility and power generation. The use of ammonia as a fueling vector can help curb global warming by cutting CO2
emissions because it is a carbon-free fuel and a hydrogen carrier with a high percentage of hydrogen atoms per unit volume. Liquid ammonia contains a higher volumetric density of hydrogen than liquid
hydrogen. The low reactivity of ammonia, however, hinders its direct usage as a combustible fuel. One feasible way to boost the reactivity of ammonia is to target a dual-fuel system comprising of ammonia
and a suitable combustion promoter. In this work, combustion properties of ammonia were investigated by blending it with various proportions of dimethyl ether (DME) using a rapid compression machine
(RCM) and a constant volume spherical reactor (CVSR) over a wide range of experimental conditions. DME is a highly reactive fuel that may be produced in a sustainable carbon cycle with a net zero-carbon
emission. Ignition delay times (IDTs) of NH3/DME blends were measured over a temperature (T) range of 649e950 K, pressures (P) of 20 and 40 bar, equivalence ratios (F) of 0.5 and 1 for a range of DME mole
fractions (cDME) of 0.05e0.5 in the blends. In addition, the laminar burning velocities of NH3/DME blends were measured at P ¼ 1, 3 and 5 bar, F ¼ 0.8e1.3 and T ¼ 300 K for cDME ranging from 0.18 to 0.47. Our
results suggest that DME is a good ignition promoter, resulting in a significant shortening of IDTs and an increase of flame speeds of NH3. A detailed chemical model has been developed and validated against the
experimental data. Overall, our kinetic model offered reasonable predictive capabilities capturing the experimental trends over a wide range of conditions. In the worst-case scenario, our model underpredicted IDTs by a factor of ~2.5 while overpredicting laminar flame speed by ~20%.
A Kinetic Modeling Study for the Effect of NOx on Oxymethylene ethers (OMEn, n = 0 and 1) oxidation
(2021)
We present a detailed kinetic model for the oxidation of dimethyl ether (OME0) and dimethoxymethane (OME1) in presence of NOx. We further explored the effect of NOx chemistry on the oxidation kinetics of the two OMEs. Our kinetic model is validated against the recent flow reactor data from Zhang et al. (Combust. Flame. 224 (2021) 94– 107). The results indicated that NO doping severely alters the oxidation kinetics of both fuels. The onset temperature for total fuel consumption is significantly shifted to lower temperatures for both fuels, which is in line with the experimental observation. We found that the addition of NO significantly inhibited the NTC behaviour of dimethyl ether. This inhibiting effect appears to stem from the competition between CH3OCH2O2 radical consumption by NO directly and the isomerization/dissociation reactions of CH3OCH2O2. Unlike dimethyl ether, dimethoxymethane does not exhibit a strong NTC behavior, and NO addition completely inhibited its weak NTC behavior.