• search hit 47 of 50
Back to Result List

Lattice-strain induced chemical reactivity of silicon

  • Silicon wafer for solar application are produced by multi-wire sawing from 12x12 cm2 silicon bricks. After slicing the wafer surface consists of a several micrometer surface layer of very heterogeneous constitution, the so called saw damage. The topmost layer of the saw damage consists of debris, amorphous silicon and high-pressure silicon phases followed by a very defect-rich and lattice-strained region of fractures, cracks, and rifts caused by the rupture of the silicon lattice during the slicing process [1,2]. Such a damaged surface exhibits very poor semiconductor properties; therefore the saw damage is removed by chemical etching using mixtures of HF, HNO3 and H2SiF6 in order to produce solar cells. Recent investigations showed that the etching of the saw damage is a very heterogeneous process [3-5]. The surface consists of spots at which the etching forms very rapidly deep grooves while other spots remain unetched over a considerably long time. Some of the rapidly formed grooves seem to remain their shape while others growSilicon wafer for solar application are produced by multi-wire sawing from 12x12 cm2 silicon bricks. After slicing the wafer surface consists of a several micrometer surface layer of very heterogeneous constitution, the so called saw damage. The topmost layer of the saw damage consists of debris, amorphous silicon and high-pressure silicon phases followed by a very defect-rich and lattice-strained region of fractures, cracks, and rifts caused by the rupture of the silicon lattice during the slicing process [1,2]. Such a damaged surface exhibits very poor semiconductor properties; therefore the saw damage is removed by chemical etching using mixtures of HF, HNO3 and H2SiF6 in order to produce solar cells. Recent investigations showed that the etching of the saw damage is a very heterogeneous process [3-5]. The surface consists of spots at which the etching forms very rapidly deep grooves while other spots remain unetched over a considerably long time. Some of the rapidly formed grooves seem to remain their shape while others grow because of an attack of the side walls, however, without making these grooves significantly deeper. So far there is no explanation for this behavior. The present work is the first study about the locally resolved etching behavior of lattice-strained silicon. The surface of polished single-crystal wafers were scratched with a diamond tip under defined conditions. By means of confocal Raman microscopy the local state of the silicon lattice in and nearby the scratches were characterized in terms of compression and tensile stress with a lateral resolution of 2 μm. Then, the scratches were etched stepwise using HF-HNO3-H2SiF6 mixtures and measured by confocal microscopy to quantify the local removal of silicon and measured by confocal Raman microscopy to monitor the lattice state. For the first time this study reveals and quantifies the impact of tensile and compressive lattice stress on the etch rate of silicon with the major outcome, that stress leads to a significantly anisotropic etching behavior. From the time dependent development of the scratch profiles and the topography of the surrounding wafer areas a detailed picture about the formation of highly reactive species and etching behavior against unstrained silicon is deduced.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Jörg AckerORCiDGND, Thomas LangnerORCiD, Tim Koschwitz
Title of the source (English):8th European Silicon Days 2018, Conference Proceedings
Publisher:Wielkopolska Centre for Advanced Technologies, Adam Mickiewicz University
Place of publication:Poznań, Poland
Editor: Bogdan Marciniec
Document Type:Conference Proceeding
Language:English
Year of publication:2016
Tag:Raman microscopy; confocal microscopy; etching; lattice strain; reactivity; silicon
First Page:S. 124
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Physikalische Chemie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.