• search hit 43 of 50
Back to Result List

Raman spectroscopic study on the formation of Cu3Si

  • The term “direct synthesis” is defined in the literature as the reactions between silicon and methyl chloride, hydrogen chloride and other reagents like chlorobenzene and ethyl chloride to yield various alkyl- or aryl substituted chlorosilanes.[1] These reactions have two features in common: (1) The reactivity of silicon - in terms of reaction start temperature, reaction rate and silane product distribution - is originated and controlled by the interaction with metals. (2) The reaction is fully under kinetic control since the formed silanes are the thermodynamically least stable products in the system Si-H-Cl-C.[2] Several authors consider Cu3Si as the catalytically active phase in the direct synthesis. It is assumed, that CuCl formed under the conditions of the direct synthesis reacts with Si according to Eq. 1 and 2 to yield Cu3Si.[1] (1) and (2) The present work describes a Raman microscopic study of the reaction of Si with Cu and CuCl with special emphasize given to the identification of the Cu3Si phase andThe term “direct synthesis” is defined in the literature as the reactions between silicon and methyl chloride, hydrogen chloride and other reagents like chlorobenzene and ethyl chloride to yield various alkyl- or aryl substituted chlorosilanes.[1] These reactions have two features in common: (1) The reactivity of silicon - in terms of reaction start temperature, reaction rate and silane product distribution - is originated and controlled by the interaction with metals. (2) The reaction is fully under kinetic control since the formed silanes are the thermodynamically least stable products in the system Si-H-Cl-C.[2] Several authors consider Cu3Si as the catalytically active phase in the direct synthesis. It is assumed, that CuCl formed under the conditions of the direct synthesis reacts with Si according to Eq. 1 and 2 to yield Cu3Si.[1] (1) and (2) The present work describes a Raman microscopic study of the reaction of Si with Cu and CuCl with special emphasize given to the identification of the Cu3Si phase and the processes occurring in the surrounding bulk Si. There is one pathway in which a solid state reaction[3] between Si and CuCl leads to a massive nucleation of Cu3Si exactly at the position of the Si/CuCl solid-solid interface. The nucleation of Cu3Si creates such an enormous lattice strain so that several high-pressure modifications of Si can be identified at the reaction site and around. The second reaction pathway is controlled by a gas phase transport of CuCl at low temperatures. This transport pathway leads to a spread of Cu in nearest neighborhood close to the CuCl particles as well to a long range transport leading to a nucleation of microscopic Cu3Si precipitates away from the CuCl particles. Further studies on the reactivity of the Cu3Si containing reaction sites were performed and will be discussed in the presentation.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: André MeißnerORCiD, Jörg AckerORCiDGND
Title of the source (English):9th European Silicon Days, 9-12 September 2018, Saarbrücken, Germany, Book of abstracts
Publisher:Universität des Saarlandes
Place of publication:Saarbrücken
Editor: David Scheschkewitz, Guido Kickelbick
Document Type:Conference Proceeding
Language:English
Year of publication:2018
Tag:Raman spectroscopy; copper silicide; direct synthesis; lattice strain; silicon
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Physikalische Chemie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.