• search hit 40 of 50
Back to Result List

Lattice strain and phase transformations in silicon introduced by the precipitation of Cu3Si

  • The reaction of Si with CuCl was studied by a combination of Raman microscopy, confocal microscopy and SEM-EDX. Two reaction pathways were observed to proceed at the same time. The first one is a solid state reaction between Si and Cu or CuCl that leads to a massive nucleation of Cu3Si exactly at the interfacial contacts between CuCl and Si. This study shows how the presence of the Cu3Si phase can be clearly identified and distinguished from areas simply covered with copper by means of Raman microscopic measurements. The second reaction pathway identified proceeds via a short-range gas phase transport of CuCl at low temperatures. The immediate reaction of the transported CuCl to the Si surface causes the massive spread of Cu in the close neighborhood around the CuCl source particles, however, without a nucleation of Cu3Si. The nucleation of Cu3Si precipitates and the short-range transport of CuCl have a tremendous impact on the underlying Si matrix. Tensile- and compressive-strained Si are generated in the immediate vicinity of theThe reaction of Si with CuCl was studied by a combination of Raman microscopy, confocal microscopy and SEM-EDX. Two reaction pathways were observed to proceed at the same time. The first one is a solid state reaction between Si and Cu or CuCl that leads to a massive nucleation of Cu3Si exactly at the interfacial contacts between CuCl and Si. This study shows how the presence of the Cu3Si phase can be clearly identified and distinguished from areas simply covered with copper by means of Raman microscopic measurements. The second reaction pathway identified proceeds via a short-range gas phase transport of CuCl at low temperatures. The immediate reaction of the transported CuCl to the Si surface causes the massive spread of Cu in the close neighborhood around the CuCl source particles, however, without a nucleation of Cu3Si. The nucleation of Cu3Si precipitates and the short-range transport of CuCl have a tremendous impact on the underlying Si matrix. Tensile- and compressive-strained Si are generated in the immediate vicinity of the precipitates and at their interface to the surrounding silicon. Indications of high-pressure modifications of Si were found. Those areas of the Si surface which are affected by the short-range transport of CuCl and covered with low concentrations of copper exhibit a significant tensile strain. As recently shown, tensile and compressive strain in Si have a significant impact on the reactivity of Si. It might be assumed that Cu3Si-induced lattice strain in Si affects the reactivity of Si in the Direct Reactions in a similar matter.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: André MeißnerORCiD, Tim Sieber, Jörg AckerORCiDGND
ISBN:978-82-997357-9-7
Title of the source (English):Silicon for the Chemical and Solar Industry XV
Publisher:The Norwegian University of Science and Technology
Place of publication:Trondheim
Editor: Birger Andresen, Harry Rong, Merete Tangstad, Halvard Tveit, Ingrid Page
Document Type:Conference publication peer-reviewed
Language:English
Year of publication:2020
Tag:Raman; copper silicide; cuprous chloride; direct synthesis; lattice strain; reactivity; silicon
First Page:47
Last Page:56
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Physikalische Chemie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.