• search hit 34 of 50
Back to Result List

A two-step acidic texturization procedure for the manufacture of lowreflective multi-crystalline silicon solar wafer

  • Texturization of multi-crystalline silicon wafers for photovoltaic application comprises the removal of the saw damage and shaping the topography of the bulk surface to create a surface with a low reflectivity, the so-called texture. Etching of multi-crystalline silicon wafers is usually carried out with acid mixtures consisting of hydrofluoric acid (HF), nitric acid (HNO₃) and hexafluorosilicic acid (H₂SiF₆). The present study reveals that such acid mixtures diluted by water or modified by the addition of ammonia solution, NH₃ (added as ammonium hydroxide solution, NH₄OH) can create textures with a significantly increased surface area exceeding that obtained by standard etching mixtures by a factor of 2.5–3. This yields a significantly reduced reflectivity of the etched wafer surface. However, the addition of water or NH₃ causes a very low etching rate, which makes such mixtures inapplicable for industrial application. To overcome this disadvantage, a two-step etching regime was developed to produce surface-enlarged solar wafersTexturization of multi-crystalline silicon wafers for photovoltaic application comprises the removal of the saw damage and shaping the topography of the bulk surface to create a surface with a low reflectivity, the so-called texture. Etching of multi-crystalline silicon wafers is usually carried out with acid mixtures consisting of hydrofluoric acid (HF), nitric acid (HNO₃) and hexafluorosilicic acid (H₂SiF₆). The present study reveals that such acid mixtures diluted by water or modified by the addition of ammonia solution, NH₃ (added as ammonium hydroxide solution, NH₄OH) can create textures with a significantly increased surface area exceeding that obtained by standard etching mixtures by a factor of 2.5–3. This yields a significantly reduced reflectivity of the etched wafer surface. However, the addition of water or NH₃ causes a very low etching rate, which makes such mixtures inapplicable for industrial application. To overcome this disadvantage, a two-step etching regime was developed to produce surface-enlarged solar wafers within a timespan typical for industrial production lines. This procedure comprises a first step of slow etching with a NH₃-modified etching mixture to pre-shape the ascut wafer surface. The second etching step is performed with a typical HF/HNO₃/H₂SiF₆ etching mixture that finalizes the texturization. Electrical measurements made on solar cells produced from such etched wafer confirm the improved surface quality of the two-step etched wafer compared to the reference wafer.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Birgit Meinel, Thomas LangnerORCiD, Pirmin Preis, Eckard Wefringhaus, Jörg AckerORCiDGND
DOI:https://doi.org/10.1016/j.solener.2019.09.051
ISSN:0038-092X
Title of the source (English):Solar Energy
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2019
Contributing Corporation:ISC Konstanz e.V.
Tag:acidic texturization; confocal microscopy; multi-crystalline silicon; reflectivity; solar cell parameter; topography
Volume/Year:193
First Page:395
Last Page:402
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Physikalische Chemie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.