• search hit 1 of 1
Back to Result List

Self-sufficient semi-active vibration control of high-rise buildings under wind excitation by moveable double-skin facades

  • The accelerated urbanization has led to increasing tension on urban land use. In this context, more and more slender high-rise buildings are being built worldwide in pursuit of better economic benefits. However, these structures are susceptible to wind excitation due to their lower first natural frequency. Different passive, semi-active, and active damping systems have been developed to reduce wind-induced structural vibration. Among them, the tuned mass dampers are widely used and proved as a very effective method in practice. However, this system requires a large additional damping mass. This also causes additional reinforcement, which increases the cost and carbon footprint. A huge space near the top story of the building is needed for the installation. In this research, a novel system named distributed-Multiple Tuned Facade Damping (d-MTFD) system is proposed by using specially designed parallel moveable Double-Skin Facade (DSF) outer skin as damping mass. These moveable facade elements can be installed on the upper stories of theThe accelerated urbanization has led to increasing tension on urban land use. In this context, more and more slender high-rise buildings are being built worldwide in pursuit of better economic benefits. However, these structures are susceptible to wind excitation due to their lower first natural frequency. Different passive, semi-active, and active damping systems have been developed to reduce wind-induced structural vibration. Among them, the tuned mass dampers are widely used and proved as a very effective method in practice. However, this system requires a large additional damping mass. This also causes additional reinforcement, which increases the cost and carbon footprint. A huge space near the top story of the building is needed for the installation. In this research, a novel system named distributed-Multiple Tuned Facade Damping (d-MTFD) system is proposed by using specially designed parallel moveable Double-Skin Facade (DSF) outer skin as damping mass. These moveable facade elements can be installed on the upper stories of the high-rise building. Smooth-running guide rail systems are used to achieve the parallel moveability. Multi-objective optimization based on the Genetic Algorithm (GA) is applied to reduce the maximum top floor acceleration (Objective I) and to reduce the maximum facade relative displacement (Objective II) simultaneously. The optimization results for the passive and semi-active systems are presented in the form of the Pareto front. The trade-off between these selected two competing optimization objectives is observed. This approach was first validated in a simulation using a 306 m tall reference building for a wind speed of 13.5 m/s at 10 m above ground level with a return period of 10 years. Acceptable peak accelerations at the top story for hotel use and a maximum facade relative displacement of less than ±0.5 m could be achieved for the benchmark building with the d-MTFD system. For semi-active control, the variable damping coefficient can be achieved by using stepper motors in generator mode. The electrical damping coefficient can be continuously adjusted by the developed power electronics. In addition, electrical energy can be generated and stored in a battery. A full-scale prototype with one parallel moveable facade element was built. Based on the prototype, the functionality of the semi-active control using a stepper motor and its energy harvesting performance was tested by applying Hardware-in-the-Loop (HiL) simulations. Greybox system identification was used to estimate some parameters (spring stiffness, friction, etc.) in the connection. The accurate system identification results ensure further validation using HiL simulations. The HiL simulations successfully demonstrated the feasibility of a self-powered semi-active d-MTFD system.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Yangwen Zhang
URN:urn:nbn:de:kobv:co1-opus4-63811
DOI:https://doi.org/10.26127/BTUOpen-6381
ISSN:2569-2798
Place of publication:Cottbus ; Senftenberg
Document Type:Doctoral thesis
Language:English
Year of publication:2023
Number of pages:184
Series ; volume number:Schriftenreihe Lehrstuhl Hybride Konstruktionen - Massivbau ; Heft 15
Way of publication:Open Access
Faculty/Chair:Fakultät 6 Architektur, Bauingenieurwesen und Stadtplanung / FG Hybride Konstruktionen - Massivbau
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.