• search hit 5 of 66
Back to Result List

Experimental analysis of the effect of nano-metals and novel organic additives on performance and emissions of a diesel engine

  • The present study focuses on performance and emission characteristics of three emulsion fuels with different additives on a single cylinder CI engine. Each of these emulsified fuels is distinctively engineered to be an alternative fuel for diesel engines. The test fuels are diesel, biodiesel, an emulsion fuel with 86% biodiesel, 5% DEE, 3% Ethanol, 50 ppm CNT, 2% Water, 2% Tween 80 and 2% Span 80 (BD.CNT.DEE.E), an emulsion fuel with 86% biodiesel, 5% EHN, 3% Methanol, 50 ppm Al2O3, 2% Water, 2% Tween 80 and 2% Span 80 (BD.ALO.EHN.M) and an emulsion fuel with 86% biodiesel, 5% Glycerine, 3% Butanol, 50 ppm TiO2, 2% Water, 2% Tween 80 and 2% Span 80 (BD.TIO.GLC.B). Experimental results revealed that BD.CNT.DEE.E has significant improvement compared to diesel and biodiesel in every aspect of performance such as enhanced brake power and brake thermal efficiency by 8.1% and 4.5%, respectively along with the most BSFC reduction by 4%. It also shows exceptional reduction in all emissions compared to biodiesel by 26%, 7.5%, 9.2% and 36% inThe present study focuses on performance and emission characteristics of three emulsion fuels with different additives on a single cylinder CI engine. Each of these emulsified fuels is distinctively engineered to be an alternative fuel for diesel engines. The test fuels are diesel, biodiesel, an emulsion fuel with 86% biodiesel, 5% DEE, 3% Ethanol, 50 ppm CNT, 2% Water, 2% Tween 80 and 2% Span 80 (BD.CNT.DEE.E), an emulsion fuel with 86% biodiesel, 5% EHN, 3% Methanol, 50 ppm Al2O3, 2% Water, 2% Tween 80 and 2% Span 80 (BD.ALO.EHN.M) and an emulsion fuel with 86% biodiesel, 5% Glycerine, 3% Butanol, 50 ppm TiO2, 2% Water, 2% Tween 80 and 2% Span 80 (BD.TIO.GLC.B). Experimental results revealed that BD.CNT.DEE.E has significant improvement compared to diesel and biodiesel in every aspect of performance such as enhanced brake power and brake thermal efficiency by 8.1% and 4.5%, respectively along with the most BSFC reduction by 4%. It also shows exceptional reduction in all emissions compared to biodiesel by 26%, 7.5%, 9.2% and 36% in CO, UHC, NOx and smoke, respectively. BD.ALO.EHN.M also shows considerable improvement in performance including the highest brake thermal efficiency with 6% increment and decline in all emissions except UHC, compared to biodiesel. Finally, BD.TIO.GLC.B shows a slight drop in performance with 6.6% drop in brake thermal efficiency, but on the other hand it has the lowest smoke opacity by a plummet of 74.3%, 20% decline in CO and 10.7% reduction in NOx compared to biodiesel. Therefore, it can be deducted that the emulsion fuels with the proper additives including oxygenated fuels, nano metals, stabilizers, cetane improvers and mixture emulsifiers could ensure clean and renewable alternatives for diesel engines.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Mohsen Mardi Kolur, Oleksiy Antoshkiv, Heinz Peter Berg
URL:https://www.sciencedirect.com/science/article/pii/S0378382019311397
DOI:https://doi.org/10.1016/j.fuproc.2019.106166
ISSN:0378-3820
Title of the source (English):Fuel Processing Technology
Document Type:Scientific journal article peer-reviewed
Language:German
Year of publication:2019
Tag:diesel engine; emission reduction; emulsion fuel; organic additives
Volume/Year:196
First Page:1
Last Page:10
Article number:106166
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Verbrennungskraftmaschinen und Flugantriebe
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.