• search hit 19 of 293
Back to Result List

Impact of increased power plant cycling on the oxidation and corrosion of coal-fired superheater materials

  • As power generation from variable renewable energy sources such as wind and solar power continues to increase in the future, fewer baseload power plants will be needed. As a result, high operational flexibility is becoming a vital requirement for conventional power plants to allow for the smooth integration of the variable renewable energy sources (v-RES) into the grid. To understand the impact of high operational flexibility (increased cycling) for coal-fired power plant materials, five commercial coal boiler superheater and reheater materials were investigated under isothermal and cyclic conditions for 1000 h each. The candidate alloys investigated were: T91, VM12-SHC, TP347-HFG, DMV304 HCu and DMV310 N. The results (weight change kinetics and metallographic analysis) after exposure at a metal surface temperature of 650 °C clearly showed the impact of increased flexibility on the corrosion and oxidation of the materials. Oxide growth (weight gain), metal loss, oxide spallation, and grain boundary attack were found to be more severeAs power generation from variable renewable energy sources such as wind and solar power continues to increase in the future, fewer baseload power plants will be needed. As a result, high operational flexibility is becoming a vital requirement for conventional power plants to allow for the smooth integration of the variable renewable energy sources (v-RES) into the grid. To understand the impact of high operational flexibility (increased cycling) for coal-fired power plant materials, five commercial coal boiler superheater and reheater materials were investigated under isothermal and cyclic conditions for 1000 h each. The candidate alloys investigated were: T91, VM12-SHC, TP347-HFG, DMV304 HCu and DMV310 N. The results (weight change kinetics and metallographic analysis) after exposure at a metal surface temperature of 650 °C clearly showed the impact of increased flexibility on the corrosion and oxidation of the materials. Oxide growth (weight gain), metal loss, oxide spallation, and grain boundary attack were found to be more severe under cyclic conditions than under isothermal conditions.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Roger Atini Abang, Sabine WeißORCiDGND, Hans Joachim KrautzGND
DOI:https://doi.org/10.1016/j.fuel.2018.02.047
ISSN:0016-2361
Title of the source (English):Fuel
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2018
Tag:Power plant flexibility, Isothermal oxidation, Cyclic oxidation, High temperature corrosion, Superheaters
Volume/Year:2018
Issue number:220
First Page:521
Last Page:534
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Thermische Energietechnik
Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Metallkunde und Werkstofftechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.