• search hit 38 of 108
Back to Result List

Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system

  • This study investigates the spatial and temporal impact of microclimate conditions caused by poplar hedgerows in a short rotation alley cropping system (SRACS), and their effect on the atmospheric evaporative demand (AED) and the grain crop yield of winter wheat (Triticum aestivum var. Patras) in direct comparison to a common agricultural crop system. Microclimate was measured at nine positions distributed at the SRACS and an adjacent open field in Brandenburg State (Germany) from March to August 2016. Our hypothesis was that microclimate and AED was improved at SRACS, with traceable effects on the crop yield. The analysis of air temperature and water vapour deficit (VPD) data revealed significantly (p B 0.05) lower daytime values from June to August at the crop alley of the SRACS, which were generally most frequent at the poplar hedgerow and 3 m west positions. By contrast, wind speed was reduced at almost all the positions of our crop alley and during the entire measurement period during both day and night. The AED measured onThis study investigates the spatial and temporal impact of microclimate conditions caused by poplar hedgerows in a short rotation alley cropping system (SRACS), and their effect on the atmospheric evaporative demand (AED) and the grain crop yield of winter wheat (Triticum aestivum var. Patras) in direct comparison to a common agricultural crop system. Microclimate was measured at nine positions distributed at the SRACS and an adjacent open field in Brandenburg State (Germany) from March to August 2016. Our hypothesis was that microclimate and AED was improved at SRACS, with traceable effects on the crop yield. The analysis of air temperature and water vapour deficit (VPD) data revealed significantly (p B 0.05) lower daytime values from June to August at the crop alley of the SRACS, which were generally most frequent at the poplar hedgerow and 3 m west positions. By contrast, wind speed was reduced at almost all the positions of our crop alley and during the entire measurement period during both day and night. The AED measured on sampling days in July was significantly (p B 0.001) reduced at the whole crop alley, with values from 24 to 32% in comparison to the open field. We observed a strong linear relationship (R2 & 0.78–0.99) between AED on one side and wind speed and VPD on the other side. The average grain yield within the SRACS was 16% higher than on the OF. However, our microclimate data were insufficient to explain this yield surplus.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Michael Kanzler, Christian Böhm, Jaconette Mirck, Dieter Schmitt, Maik VesteORCiD
DOI:https://doi.org/10.1007/s10457-018-0289-4
ISSN:1572-9680
ISSN:0167-4366
Title of the source (English):Agroforestry Systems
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2018
Number of pages:21
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.