• search hit 29 of 149
Back to Result List

Untersuchung zur Membrangängigkeit von Antiscalants

  • Aminophosphonate sind synthetisch hergestellte Komplexbildner, die kovalente C-P Bindungen aufweisen. Durch zusätzlich eingefügte Aminogruppen (NH2) komplexieren Amino-phosphonate besonders gut Metallionen, weshalb sie in einem sehr breiten Anwendungsspektum zum Einsatz kommen. So werden Phosphonate vielseitig als Haushalts- und Industriereiniger, aber auch als Komponenten von Kosmetika und in der Medizin verwendet. Des weiteren werden sie zur Kühlwasserkonditionierung, Stabilisierung von Peroxiden oder Bleichbädern und als Korrosionsinhibiter eingesetzt. Entsprechend der vielseitigen Anwendungsgebiete lag bereits in den früher 90igern des vergangenen Jahrhunderts die Gesamtproduktion an Phosphonaten in Europa bei über 11.000 Tonnen pro Jahr (Jaworska et al., 2002). Weltweit zeigen die Nutzung und der damit verbundene Bedarf an Phosphonaten einen immer weiter steigenden Trend. Dem entgegen steht der noch immer wenig untersuchte Verbleib und das chemische Verhalten von Phosphonaten in der Umwelt. Die gegenwärtig technischAminophosphonate sind synthetisch hergestellte Komplexbildner, die kovalente C-P Bindungen aufweisen. Durch zusätzlich eingefügte Aminogruppen (NH2) komplexieren Amino-phosphonate besonders gut Metallionen, weshalb sie in einem sehr breiten Anwendungsspektum zum Einsatz kommen. So werden Phosphonate vielseitig als Haushalts- und Industriereiniger, aber auch als Komponenten von Kosmetika und in der Medizin verwendet. Des weiteren werden sie zur Kühlwasserkonditionierung, Stabilisierung von Peroxiden oder Bleichbädern und als Korrosionsinhibiter eingesetzt. Entsprechend der vielseitigen Anwendungsgebiete lag bereits in den früher 90igern des vergangenen Jahrhunderts die Gesamtproduktion an Phosphonaten in Europa bei über 11.000 Tonnen pro Jahr (Jaworska et al., 2002). Weltweit zeigen die Nutzung und der damit verbundene Bedarf an Phosphonaten einen immer weiter steigenden Trend. Dem entgegen steht der noch immer wenig untersuchte Verbleib und das chemische Verhalten von Phosphonaten in der Umwelt. Die gegenwärtig technisch eingesetzten Phosphonate ähneln in ihrer Struktur den bekannteren Aminocarboxylaten wie dem EDTA und NTA. Chemisch synthetisierte Phosphonate sind nur schwer biologisch abbaubar, weshalb zu einer kontinuierlichen Anreicherung in der aquatischen Umwelt kommen kann (Jaworska et al., 2002). Dies liegt unter anderem auch daran, dass Phosphonate als Phosphatersatz in großen Mengen in Waschmitteln enthalten sind und über das Abwasser in die Kläranlagen gelangen, wo sie nicht weiter biologisch abgebaut werden. Sie werden hauptsächlich durch Absorption an die Oberfläche vom Belebtschlamm aus den Abwasser entfernt. Nowack (2004) beschrieb die Toxizität von Phosphonaten in Kläranlagen als gering, verwies aber gleichzeitig darauf, dass aufgrund ihrer hohen Stabilität Phosphonate hemmend auf Proteasen und Syntheasen (Enzyme) von Mikroorganismen wirken. Der photochemische und biologische Abbau von dem Phosphonat EDTMP wurde eingehend untersucht, um dessen Umweltverhalten besser abschätzen zu können. Ziel der Untersuchungen war es den Abbauprozess zu entschlüsseln als Grundlage für die langfristige Entwicklung umweltverträglicher Aminophosphonatstrukturen. Der photochemische Abbau von EDTMP und die Bildung von Metaboliten konnte mittels LC-MS und 31P-NMR bereits aufgeklärt werden. So zeigt sich das EDTMP bereits nach wenigen Minuten im UV-Licht zerfällt und nicht mehr nachgewiesen werden kann. Als Hauptprodukt konnte das Phosphonat IDMP identifiziert werden. Als weitere Abbauprodukte konnten die Phosphonate EABMP und AMPA identifiziert werden. In allen Versuchen konnte nach 300 min UV-Behandlung mindestens 75% des Endprodukts CO2 nachgewiesen werden. Weitere drei maßgebliche Abbauprodukte wurden mit Hilfe der LC-MS gefunden. Deren chemische Struktur konnte bisher jedoch noch nicht eindeutig beschrieben werden. Im Anschluss an die UV-Experimente wurde ein Versuch mit Sonnenlicht simuliert. Insgesamt verlief der EDTMP-Abbau im Sonnenlicht wesentlich langsamer. Auch hier konnten wieder dieselben Abbauprodukte IDMP, EABMP und AMPA identifiziert werden. Zusätzlich traten auch die drei noch nicht eindeutig identifizierten Metaboliten von EDTMP auf. Aus den gewonnen Daten kann somit geschlussfolgert werden, dass EDTMP unter Einwirkung von UV-Licht abbaubar ist. Die Annahme, dass EDTMP und dessen Abbauprodukte langfristig zur Schädigung des aquatischen Ökosystems führt, kann somit nicht bestätigt werden. In weiteren Untersuchungen wurde der biologische Abbau von EDTMP und seiner photochemischen Abbauprodukten eingehend studiert. Für die Abbauversuche wurden die beiden Stämme Pseudomonas aeruginosa und Ochrobactrum sp. aus Boden isoliert. Es konnte gezeigt werden, dass sie 1mM EDTMP innerhalb von 35 Tagen zu mindestens 94% abbauen. Zusätzlich zum biologischen Abbau von EDTMP wurden auch die Verdopplungszeitung der beiden Stämme für EDTMP, IDMP, EABMP und AMAP ermittelt. Es zeigte sich, dass der Stamm P. aeruginosa für alle vier Phosphonate ein besseres wachstum zeigte als Ochrobactrum sp. Der Stamm P. aeruginosa erreichte für die Verstoffwechselung von EDTMP eine Verdopplungszeit von 10,1 Tagen, für IDMP 7,4 Tage, für EABMP 7,4 Tage und für AMPA 13,7 Tage. Der Stamm Ochrobactrum sp. erreichte für das Substrat EDTMP eine Verdopplungszeit von 11,8 Tagen, für IDMP 18,9 Tage, für EABMP 7,7 Tage und für AMPA 22,0 Tage. Offensichtlich war für beide Stämme der Abbau von AMPA der limitierende, aber nicht hemmende Schritt im biologischen Abbau. Somit kann geschlussfolgert werden, dass die Abbauprodukte der Photolyse auch biologisch abgebaut werden können. In weiteren Untersuchungen soll der biologische Abbau auf enzymatischer Ebene entschlüsselt werden. Die Identifizierung der Schüsselenzyme spielt hierbei eine wesentliche Rolle, um neuartige Phosphonatstrukturen herzuleiten, die auf der einen Seite ihre Funktionalität und Eigenschaften behalten, aber auf der anderen Seite eine erheblich verbesserte Bioverfügbarkeit aufweisen, so dass eine dauerhafte Akkumulation in der Umwelt und Folgebeeinträchtigungen minimiert ggf. ausgeschlossen werden können.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Volker Preuß, Carsten Vornholt, Ramona KuhnORCiD, Marion MartienssenORCiD
DOI:https://doi.org/10/35549368458
ISBN:978-3-95886-305-7
Title of the source (German):13. Aachener Tagung Wassertechnologie : Verfahren der Wasseraufbereitung und Abwasserbehandlung
Publisher:Verlagshaus Mainz GmbH Aachen
Place of publication:Aachen
Editor: Matthias Wessling, Johannes Pinnekamp
Document Type:Conference publication peer-reviewed
Language:German
Year of publication:2019
Tag:Antiscalant; Membranfiltration; Membrangängigkeit; Nanofiltration; Phosphonate; Umkehrosmose
Volume/Year:2019
Edition:1. Auflage
First Page:117
Last Page:123
Article number:S3
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Biotechnologie der Wasseraufbereitung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.