• search hit 28 of 149
Back to Result List

Photodegradation of ethylenediaminetetra(methylenephosphonic acid) – The effect of the system configuration

  • Photodegradation of aminophosphonates such as ethylenediaminetetra(methylenephosphonic acid) (EDTMP) is recently assumed being the major degradation pathway in aquatic environments. Several photolysis studies were reported about EDTMP and possible breakdown products occurring in natural ecosystems. Reliable prediction of environmental photolysis of parent compounds and possible release of breakdown products requires different set-up conditions and varying the parameters influencing the photodegradation. We studied the influence of three different system configurations during UV degradation of EDTMP. These three configurations differed either in geometry and/or treated sample volumes. System 1 was equipped with a direct cooling jacket at the UV lamp. System 2 had the geometry of system 1 but there was no usage of a direct cooling jacket. System 3 was a gas-tight system with a larger sample volume. Using the chemical actinometer potassium ferrioxalate, we determined the highest photon flux for system 3 followed by system 2 and 1. InPhotodegradation of aminophosphonates such as ethylenediaminetetra(methylenephosphonic acid) (EDTMP) is recently assumed being the major degradation pathway in aquatic environments. Several photolysis studies were reported about EDTMP and possible breakdown products occurring in natural ecosystems. Reliable prediction of environmental photolysis of parent compounds and possible release of breakdown products requires different set-up conditions and varying the parameters influencing the photodegradation. We studied the influence of three different system configurations during UV degradation of EDTMP. These three configurations differed either in geometry and/or treated sample volumes. System 1 was equipped with a direct cooling jacket at the UV lamp. System 2 had the geometry of system 1 but there was no usage of a direct cooling jacket. System 3 was a gas-tight system with a larger sample volume. Using the chemical actinometer potassium ferrioxalate, we determined the highest photon flux for system 3 followed by system 2 and 1. In addition, we performed scavenger experiments with methanol and ascorbic acid in order to prove the dominating radical species. In system 1, the addition of methanol showed almost no effect while the ascorbic acid resulted in a reduction of 57.1% orthophosphate released. Therefore we conclude that in system 1 the radical-drive degradation of EDTMP is mainly based on superoxide radicals. In system 2 and 3 both radical species, i.e., hydroxyl radicals and superoxide radicals, contribute to the photodegradation of EDTMP. We determined different half-lives for EDTMP for the three different systems configurations. For system 1, the estimated half-life achieved was 14.09 ± 0.15 min. For system 2 and 3, the half-lives were almost similar and averaged 4.75 ± 0.05 min and 5.02 ± 0.20 min, respectively. Contrary to our assumption to also find the highest degradation rate for system 3, we found the highest degradation rate for system configuration 2 as a result of the differences in the construction and geometry of the three systems. Our findings lead us to recommend the three system configuration for different research purposes. Thus, we recommend system 1 for detailed studies on the degradation pathway of the parent compound and their breakdown products. System 2 is recommended as a suitable configuration for kinetic studies of the parent compound. And finally, we recommend the system configuration 3 for complete mass balances. The gas-tight system allows determining all soluble and gaseous compounds.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Ramona KuhnORCiD, Robert Jensch, Isaac Mbir Bryant, Thomas FischerORCiD, Stephan Liebsch, Marion MartienssenORCiD
DOI:https://doi.org/10.1016/j.jphotochem.2019.112192
ISSN:1010-6030
Title of the source (English):Journal of Photochemistry & Photobiology A: Chemistry
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2020
Tag:Actinometry; LC/MS; Phosphonates; Photodegradation; Photon flux; Scavenger
Volume/Year:388
Number of pages:9
Article number:112192
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Biotechnologie der Wasseraufbereitung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.