• search hit 5 of 134
Back to Result List

Novel model for the prediction of SSLE temperatures and crystallization paths of any mixture containing palmitic, stearic, oleic, linoleic and linolenic acid

  • A mathematical model for the prediction of phase change temperatures and crystallization paths for mixtures consisting of palmitic (P), stearic (S), oleic (O), linoleic (L) and linolenic acid (Ll) in any distribution is presented in this paper. This model is based on the information gathered from modeled ternary phase diagrams, namely PSO, PSL, PSLl and OLLl, that were based on experimental binary phase diagrams of all possible combinations of these fatty acids. These experimental binary phase diagrams were obtained by means of differential scanning calorimetry and mathematical function fitting, within which the eutectic region of binary palmitic/stearic with oleic/linoleic/linolenic acid was investigated in detail. The basic mathematical model used was previously shown in literature which delivered good results for such systems. The importance of the developed model was then justified by investigations on real and composed synthetic fatty acid mixtures, where a high accuracy of the predicted temperatures could be shown for theA mathematical model for the prediction of phase change temperatures and crystallization paths for mixtures consisting of palmitic (P), stearic (S), oleic (O), linoleic (L) and linolenic acid (Ll) in any distribution is presented in this paper. This model is based on the information gathered from modeled ternary phase diagrams, namely PSO, PSL, PSLl and OLLl, that were based on experimental binary phase diagrams of all possible combinations of these fatty acids. These experimental binary phase diagrams were obtained by means of differential scanning calorimetry and mathematical function fitting, within which the eutectic region of binary palmitic/stearic with oleic/linoleic/linolenic acid was investigated in detail. The basic mathematical model used was previously shown in literature which delivered good results for such systems. The importance of the developed model was then justified by investigations on real and composed synthetic fatty acid mixtures, where a high accuracy of the predicted temperatures could be shown for the technically relevant liquidus and solidus temperatures. A satisfying prediction for thermal events below the first solidus line could be reached as well. This work directly contributes to an enhanced understanding of the thermodynamic and kinetic background of such important mixtures applied in diverse products and industries, thereby showing a large optimization potential for crystallization technologies.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Karl-Andreas Eckert, Sunanda Dasgupta, Benjamin Selge, Peter Ay
DOI:https://doi.org/10.1016/j.tca.2017.03.015
ISSN:0040-6031
Title of the source (English):Thermochimica Acta
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2017
Tag:Binary mixtures; DSC; Modeling; Phase diagram; Saturated and unsaturated fatty acids; Solid liquid equilibrium; Ternary mixtures
Volume/Year:652
First Page:126
Last Page:140
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Aufbereitungstechnik und Sekundärrohstofftechnologie (ehemals)
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.