• search hit 68 of 144
Back to Result List

From Epidemic to Pandemic Modelling

  • We present a methodology for systematically extending epidemic models to multilevel and multiscale spatio-temporal pandemic ones. Our approach builds on the use of coloured stochastic and continuous Petri nets facilitating the sound component-based extension of basic SIR models to include population stratification and also spatio-geographic information and travel connections, represented as graphs, resulting in robust stratified pandemic metapopulation models. The epidemic components and the spatial and stratification data are combined together in these coloured models and built in to the underlying expanded models. As a consequence this method is inherently easy to use, producing scalable and reusable models with a high degree of clarity and accessibility which can be read either in a deterministic or stochastic paradigm. Our method is supported by a publicly available platform PetriNuts; it enables the visual construction and editing of models; deterministic, stochastic and hybrid simulation as well as structural and behaviouralWe present a methodology for systematically extending epidemic models to multilevel and multiscale spatio-temporal pandemic ones. Our approach builds on the use of coloured stochastic and continuous Petri nets facilitating the sound component-based extension of basic SIR models to include population stratification and also spatio-geographic information and travel connections, represented as graphs, resulting in robust stratified pandemic metapopulation models. The epidemic components and the spatial and stratification data are combined together in these coloured models and built in to the underlying expanded models. As a consequence this method is inherently easy to use, producing scalable and reusable models with a high degree of clarity and accessibility which can be read either in a deterministic or stochastic paradigm. Our method is supported by a publicly available platform PetriNuts; it enables the visual construction and editing of models; deterministic, stochastic and hybrid simulation as well as structural and behavioural analysis. All models are available as Supplementary Material, ensuring reproducibility. All uncoloured Petri nets can be animated within a web browser at https://www-dssz.informatik.tu-cottbus.de/DSSZ/Research/ModellingEpidemics, assisting the comprehension of those models. We aim to enable modellers and planners to construct clear and robust models by themselves.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Shannon Connolly, David Gilbert, Monika HeinerORCiD
URL:https://www.frontiersin.org/articles/10.3389/fsysb.2022.861562/full
DOI:https://doi.org/10.3389/fsysb.2022.861562
ISSN:2674-0702
Title of the source (English):Frontiers in Systems Biology
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2022
Tag:ODEs; SIR model; coloured Petri nets; continuous Petri nets; geographic spatio-temporal modelling; multiscale models; simulation; stochastic Petri nets
Volume/Year:2
First Page:1
Last Page:23
Article number:861562
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Datenstrukturen und Softwarezuverlässigkeit
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.