• search hit 45 of 301
Back to Result List

Quantum approaches to music cognition

  • Quantum cognition emerged as an important discipline of mathematical psychology during the last two decades. Using abstract analogies between mental phenomena and the formal framework of physical quantum theory, quantum cognition demonstrated its ability to resolve several puzzles from cognitive psychology. Until now, quantum cognition essentially exploited ideas from projective (Hilbert space) geometry, such as quantum probability or quantum similarity. However, many powerful tools provided by physical quantum theory, e.g., symmetry groups have not been utilized in the field of quantum cognition research sofar. Inspired by seminal work by Guerino Mazzola on the symmetries of tonal music, our study aims at elucidating and reconciling static and dynamic tonal attraction phenomena in music psychology within the quantum cognition framework. Based on the fundamental principles of octave equivalence, fifth similarity and transposition symmetry of tonal music that are reflected by the structure of the circle of fifths, we develop differentQuantum cognition emerged as an important discipline of mathematical psychology during the last two decades. Using abstract analogies between mental phenomena and the formal framework of physical quantum theory, quantum cognition demonstrated its ability to resolve several puzzles from cognitive psychology. Until now, quantum cognition essentially exploited ideas from projective (Hilbert space) geometry, such as quantum probability or quantum similarity. However, many powerful tools provided by physical quantum theory, e.g., symmetry groups have not been utilized in the field of quantum cognition research sofar. Inspired by seminal work by Guerino Mazzola on the symmetries of tonal music, our study aims at elucidating and reconciling static and dynamic tonal attraction phenomena in music psychology within the quantum cognition framework. Based on the fundamental principles of octave equivalence, fifth similarity and transposition symmetry of tonal music that are reflected by the structure of the circle of fifths, we develop different wave function descriptions over this underlying tonal space. We present quantum models for static and dynamic tonal attraction and compare them with traditional computational models in musicology. Our approach replicates and also improves predictions based on symbolic models of music perception.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Peter Beim Graben, Reinhard Blutner
DOI:https://doi.org/10.1016/j.jmp.2019.03.002
ISSN:0022-2496
Title of the source (English):Journal of Mathematical Psychology
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2019
Tag:Music psychology; Quantum cognition; Tonal attraction; Tonal space
Volume/Year:91
First Page:38
Last Page:50
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Kommunikationstechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.