• search hit 17 of 301
Back to Result List

Efficient plasma-surface interaction surrogate model for sputtering processes based on autoencoder neural networks

  • Simulations of thin film sputter deposition require the separation of the plasma and material transport in the gas phase from the growth/sputtering processes at the bounding surfaces (e.g., substrate and target). Interface models based on analytic expressions or look-up tables inherently restrict this complex interaction to a bare minimum. A machine learning model has recently been shown to overcome this remedy for Ar ions bombarding a Ti-Al composite target. However, the chosen network structure (i.e., a multilayer perceptron, MLP) provides approximately 4×106 degrees of freedom, which bears the risk of overfitting the relevant dynamics and complicating the model to an unreliable extent. This work proposes a conceptually more sophisticated but parameterwise simplified regression artificial neural network for an extended scenario, considering a variable instead of a single fixed Ti-Al stoichiometry. A convolutional 𝛽-variational autoencoder is trained to reduce the high-dimensional energy-angular distribution of sputtered particles toSimulations of thin film sputter deposition require the separation of the plasma and material transport in the gas phase from the growth/sputtering processes at the bounding surfaces (e.g., substrate and target). Interface models based on analytic expressions or look-up tables inherently restrict this complex interaction to a bare minimum. A machine learning model has recently been shown to overcome this remedy for Ar ions bombarding a Ti-Al composite target. However, the chosen network structure (i.e., a multilayer perceptron, MLP) provides approximately 4×106 degrees of freedom, which bears the risk of overfitting the relevant dynamics and complicating the model to an unreliable extent. This work proposes a conceptually more sophisticated but parameterwise simplified regression artificial neural network for an extended scenario, considering a variable instead of a single fixed Ti-Al stoichiometry. A convolutional 𝛽-variational autoencoder is trained to reduce the high-dimensional energy-angular distribution of sputtered particles to a low-dimensional latent representation with only two components. In addition to a primary decoder that is trained to reconstruct the input energy-angular distribution, a secondary decoder is employed to reconstruct the mean energy of incident Ar ions as well as the present Ti-Al composition. The mutual latent space is hence conditioned on these quantities. The trained primary decoder of the variational autoencoder network is subsequently transferred to a regression network, for which only the mapping to the particular low-dimensional space has to be learned. While obtaining a competitive performance, the number of degrees of freedom is drastically reduced to 15 111 (0.378% of the MLP) and 486 (0.012% of the MLP) parameters for the primary decoder and the remaining regression network, respectively. The underlying methodology is very general and can easily be extended to more complex physical descriptions (e.g., taking into account dynamical surface properties) with a minimal amount of data required.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Tobias GergsORCiD, Borislav BorislavovORCiD, Jan TrieschmannORCiD
DOI:https://doi.org/10.1116/6.0001485
ISSN:2166-2754
Title of the source (English):Journal of Vacuum Science & Technology. B
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2022
Volume/Year:40
Issue number:1
First Page:012802-1
Last Page:012802-15
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Kommunikationstechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.