• search hit 69 of 648
Back to Result List

Phosphorus pools in soil after land conversion from silvopasture to arable and grassland use

  • Differences in soil P among silvopasture, grassland, and arable lands have been well established. Nevertheless, most of the reports compare soil properties under long-term sites. Thus, there exists little information on the effect of the conversion of silvopasture to arable or grassland use on soil P pools. The objective of the study was to determine the impact of converting silvopasture system (SP) into arable cropping and grassland system on the distribution of P pools and potential P bioavailability. We compared the following systems: SP system, SP converted to arable cropland (SP-AL), SP converted to grassland (SP-GL), and for comparative purposes, a long-term arable cropland (AL). The P fractionation was performed by a sequential extraction scheme, using acid and alkaline extractants on samples collected from the 0–10 and 10–20 cm soil layers. It was assumed that the large variations in soil-P fractionations are caused by the different management practices associated with land conversion. The results of P fractionation showed aDifferences in soil P among silvopasture, grassland, and arable lands have been well established. Nevertheless, most of the reports compare soil properties under long-term sites. Thus, there exists little information on the effect of the conversion of silvopasture to arable or grassland use on soil P pools. The objective of the study was to determine the impact of converting silvopasture system (SP) into arable cropping and grassland system on the distribution of P pools and potential P bioavailability. We compared the following systems: SP system, SP converted to arable cropland (SP-AL), SP converted to grassland (SP-GL), and for comparative purposes, a long-term arable cropland (AL). The P fractionation was performed by a sequential extraction scheme, using acid and alkaline extractants on samples collected from the 0–10 and 10–20 cm soil layers. It was assumed that the large variations in soil-P fractionations are caused by the different management practices associated with land conversion. The results of P fractionation showed a dominance of calcium-bound P, HCl-extractable Pi constituted up to 36% of the soil total P (TP). However, the type of land use did not affect this P fraction. On the other hand, the reduction in labile-Pi and NaOH-Pi fractions observed at the SP-AL site may have led to the decline in readily available P. The soil total organic P (TPo) content was 8% and 17% lower at SP-AL compared to SP and SP-GL site, respectively. Labile organic-P (labile-Po) content was markedly higher at SP site compared to arable soils, and was ≈ 10% of TPo. The NaOH-Po constituted the highest fraction of the organic-P pool (55%–79% of TPo) across all the study systems, and was positively correlated with TPo (p < 0.01). The study indicates that conversion of SP system in temperate regions to arable cropping with conventional tillage seems to result in the reduction of P availability compared to SP, indicating SP as an important land-use practice.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Anna Slazak, Dirk FreeseORCiD, Eduardo da Silva Matos, Seth Nii-Annang, Reinhard F. HüttlGND
DOI:https://doi.org/10.1002/jpln.201200334
ISSN:1522-2624
Title of the source (English):Journal of Plant Nutrition and Soil Science
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2014
Volume/Year:177
Issue number:2
First Page:159
Last Page:167
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Institution name at the time of publication:Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / LS Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.