• search hit 21 of 648
Back to Result List

Synergic hydraulic and nutritional feedback mechanisms control surface patchiness of biological soil crusts on tertiary sands at a post-mining site

  • In a recultivation area located in Brandenburg, Germany, five types of biocrusts (initial BSC1, developed BSC2 and BSC3, mosses, lichens) and non-crusted mineral substrate were sampled on tertiary sand deposited in 1985- 1986 to investigate hydrologic interactions between crust patches. Crust biomass was lowest in the non-crusted substrate, increased to the initial BSC1 and peaked in the developed BSC2, BSC3, the lichens and the mosses. Water infiltration was highest on the substrate, and decreased to BSC2, BSC1 and BSC3. Non-metric multidimensional scaling revealed that the lichens and BSC3 were associated with water soluble nutrients and with pyrite weathering products, thus representing a high nutrient low hydraulic feedback mode. The mosses and BSC2 represented a low nutrient high hydraulic feedback mode. These feedback mechanisms were considered as synergic, consisting of run-off generating (low hydraulic) and run-on receiving (high hydraulic) BSC patches. Three scenarios for BSC succession were proposed. (1) Initial BSCs sealedIn a recultivation area located in Brandenburg, Germany, five types of biocrusts (initial BSC1, developed BSC2 and BSC3, mosses, lichens) and non-crusted mineral substrate were sampled on tertiary sand deposited in 1985- 1986 to investigate hydrologic interactions between crust patches. Crust biomass was lowest in the non-crusted substrate, increased to the initial BSC1 and peaked in the developed BSC2, BSC3, the lichens and the mosses. Water infiltration was highest on the substrate, and decreased to BSC2, BSC1 and BSC3. Non-metric multidimensional scaling revealed that the lichens and BSC3 were associated with water soluble nutrients and with pyrite weathering products, thus representing a high nutrient low hydraulic feedback mode. The mosses and BSC2 represented a low nutrient high hydraulic feedback mode. These feedback mechanisms were considered as synergic, consisting of run-off generating (low hydraulic) and run-on receiving (high hydraulic) BSC patches. Three scenarios for BSC succession were proposed. (1) Initial BSCs sealed the surface until they reached a successional stage (represented by BSC1) from which the development into either of the feedback modes was triggered, (2) initial heterogeneities of the mineral substrate controlled the development of the feedback mode, and (3) complex interactions between lichens and mosses occurred at later stages of system development.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Thomas FischerORCiD, Stella GypserORCiD, Maria Subbotina, Maik VesteORCiD
DOI:https://doi.org/10.2478/johh-2014-0038
ISSN:0042-790X
Title of the source (English):Journal of Hydrology and Hydromechanics
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2014
Volume/Year:62
Issue number:4
First Page:293
Last Page:302
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Zentrale Einrichtungen / Zentrale Analytik der BTU Cottbus-Senftenberg (ZA-BTU) / Zentrales Analytisches Labor
Institution name at the time of publication:Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / LS Bodenschutz und Rekultivierung
Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / Zentrales Analytisches Labor
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.