• search hit 9 of 119
Back to Result List

Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres

  • Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/ polycarbonate can be extracted from monitor and printer casings by near- infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors andWaste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/ polycarbonate can be extracted from monitor and printer casings by near- infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Martin Schlummer, Dagmar Arends, Andreas Mäurer, Jens Markowski, Udo Wagenknecht
DOI:https://doi.org/10.1177/0734242x15588585
ISSN:1096-3669
Title of the source (English):Waste Management & Research
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2015
Tag:Waste electrical and electronic equipment plastics; characterisation, near-infrared; recycling, separation
Volume/Year:33
Issue number:9
First Page:775
Last Page:784
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Aufbereitungstechnik und Sekundärrohstofftechnologie (ehemals)
Institution name at the time of publication:Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / LS Aufbereitungstechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.