• search hit 6 of 7
Back to Result List

Poly-3-thienylboronic Acid Nanoparticles: Synthesis, Characterization, and Interaction with Saccharides Studied at the Level of Individual Nanoparticles

  • Polythiophenboronic acid (PThBA) combines an affinity for saccharides with the unique properties of conducting polymers. This polymer was synthesized by enzymatic catalyzed oxidative polymerization, characterized by UV–vis spectroscopy in solvents of different polarity and by 1H NMR. A suspension of PThBA nanoparticles (PThBA NPs) was prepared by injecting a methanol solution of PThBA into an aqueous electrolyte. PThBA NPs were characterized by scanning electron microscopy. Nanoparticle tracking analysis and dynamic light scattering were used to study the concentration of the particles and the particle size distribution. The effect of pH on these properties was analyzed and an increase in nanoparticle size was observed at alkaline pH. This effect was explained by electrostatic swelling of the nanoparticles. Measurements of ζ-potentials in the wide pH range showed the presence of acidic groups with a pKa of 8.6; the value of the surface charge at the conditions of maximal deprotonation of these groups was estimated to be ∼70 mC/m2.Polythiophenboronic acid (PThBA) combines an affinity for saccharides with the unique properties of conducting polymers. This polymer was synthesized by enzymatic catalyzed oxidative polymerization, characterized by UV–vis spectroscopy in solvents of different polarity and by 1H NMR. A suspension of PThBA nanoparticles (PThBA NPs) was prepared by injecting a methanol solution of PThBA into an aqueous electrolyte. PThBA NPs were characterized by scanning electron microscopy. Nanoparticle tracking analysis and dynamic light scattering were used to study the concentration of the particles and the particle size distribution. The effect of pH on these properties was analyzed and an increase in nanoparticle size was observed at alkaline pH. This effect was explained by electrostatic swelling of the nanoparticles. Measurements of ζ-potentials in the wide pH range showed the presence of acidic groups with a pKa of 8.6; the value of the surface charge at the conditions of maximal deprotonation of these groups was estimated to be ∼70 mC/m2. Changes in the optical spectra of PThBA NPs due to variations in pH and additions of organic solvents indicate transformations between twisted and planar conformations of the polymer backbone. The binding of saccharides by PThBA NPs resulted in a decrease in the size and charge of the nanoparticles. Recently developed wide-field surface plasmon resonance microscopy (WF-SPRM) can simultaneously monitor every single nanoparticle among many thousands adsorbed on a surface. It was used for the first time to study chemosensitive nanoparticles. The described above effects of pH change and saccharide binding described above, monitor were confirmed by using integral techniques in monitoring individual nanoparticles, by WF-SPRM. The pH effects were shown to be reversible. An increase in the affinity of PThBA NPs for saccharides at a more alkaline pH was also observed. A fast recovery of polymer binding sites by a pH decrease was demonstrated. The synthesized and characterized PThBA NPs can be further used for various purposes including analytical assays, chemical sensors, or chemosensitive nanotechnological devices.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Olga S. Kolosova, Yulia EfremenkoORCiD, Veronika K. LaurinavichyuteORCiD, Shavkat NizamovORCiD, Serhii I. Petrushenko, Vladimir M. MirskyORCiDGND
DOI:https://doi.org/10.1021/acsanm.4c00216
ISSN:2574-0970
Title of the source (English):ACS Applied Nano Materials
Publisher:American Chemical Society
Document Type:Scientific journal article not peer-reviewed
Language:English
Date of first Publication:2024/05/24
Tag:affinity control; chemosensitive nanoparticles; conducting polymers; polythienylboronic acid; saccharides binding; surface plasmon resonance microscopy
GND Keyword:-
Volume/Year:7
Issue number:10
First Page:11120
Last Page:11135
Way of publication:Open Access
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.