• search hit 4 of 7
Back to Result List

Effects of erosion-induced changes to topography on runoff dynamics

  • Runoff generation from rainfall events is a complex, spatial and temporally dependent process strongly governed, among other factors, by catchment surface topography. Although it is widely known that many catchments experience morphological evolution, it is often ignored in analysis for different reasons ranging from simplification to lack of data. However, young catchments and early landscapes (such as those which are affected by natural or anthropogenic disturbances) do exhibit topography changes which in turn affect catchment hydrodynamics, hydrology and in particular runoff. In this work, we study the runoff generation and hydrodynamics of the Hühnerwasser artificial catchment (Brandenburg, Germany) during a period of erosion-based topographical changes (2006–2010). Nine Digital Elevation Models from such period were used as topography over which physically-based simulations were performed. The results suggest that topographic evolution in this catchment mostly affects the onset of runoff, whereas peak discharges and recedingRunoff generation from rainfall events is a complex, spatial and temporally dependent process strongly governed, among other factors, by catchment surface topography. Although it is widely known that many catchments experience morphological evolution, it is often ignored in analysis for different reasons ranging from simplification to lack of data. However, young catchments and early landscapes (such as those which are affected by natural or anthropogenic disturbances) do exhibit topography changes which in turn affect catchment hydrodynamics, hydrology and in particular runoff. In this work, we study the runoff generation and hydrodynamics of the Hühnerwasser artificial catchment (Brandenburg, Germany) during a period of erosion-based topographical changes (2006–2010). Nine Digital Elevation Models from such period were used as topography over which physically-based simulations were performed. The results suggest that topographic evolution in this catchment mostly affects the onset of runoff, whereas peak discharges and receding hydrograph limbs are less affected. These differences in hydrological signatures can be explained through the changes in the spatial distribution of runoff hydrodynamics and their impact on surface runoff connectivity. Relatively small topographical differences produce changing ponding conditions and modify flowpaths which becomes evident only through inspection of the spatial distribution of hydrodynamic variables. Moreover, the study shows that in order for simulations to be able to capture such responses, appropriate computational mesh and topographical data resolution are critical, since connectivity itself can be greatly affected by low resolution data or representation.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Shahin Khosh Bin Ghomash, Daniel Caviedes-VoullièmeORCiD, Christoph HinzORCiD
DOI:https://doi.org/10.1016/j.jhydrol.2019.04.018
ISSN:0022-1694
Title of the source (English):Journal of Hydrology
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2019
Tag:Catchment morphodynamics; Rainfall/runoff simulation; Runoff generation; Surface runoff connectivity; Topographic evolution
Volume/Year:573
First Page:811
Last Page:828
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Hydrologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.