• search hit 13 of 22
Back to Result List

Stator Blades Manufacturing Geometrical Variability in Axial Compressors and Impact on the Aeroelastic Excitation Forces

  • The manufacturing geometrical variability is a source of uncertainty, which cannot be avoided in the realization of machinery components. Deviations of a part geometry from its nominal design are inevitably present due to the manufacturing process. In the case of the aeroelastic forced response problem within axial compressors, these uncertainties may affect the vibration characteristics. For this reason, the impact of geometrical uncertainties due to the manufacturing process onto the modal forcing of axial compressor blades is investigated in this study. The research focuses on the vibrational behavior of an axial compressor rotor blisk. In particular, the amplitude of the forces acting as a source of excitation on the vibrating blades is studied. The geometrical variability of the upstream stator is investigated as input uncertainty. The variability is modeled starting from a series of optical surface scans. A stochastic model is created to represent the measured manufacturing geometrical deviations from the nominal model. A dataThe manufacturing geometrical variability is a source of uncertainty, which cannot be avoided in the realization of machinery components. Deviations of a part geometry from its nominal design are inevitably present due to the manufacturing process. In the case of the aeroelastic forced response problem within axial compressors, these uncertainties may affect the vibration characteristics. For this reason, the impact of geometrical uncertainties due to the manufacturing process onto the modal forcing of axial compressor blades is investigated in this study. The research focuses on the vibrational behavior of an axial compressor rotor blisk. In particular, the amplitude of the forces acting as a source of excitation on the vibrating blades is studied. The geometrical variability of the upstream stator is investigated as input uncertainty. The variability is modeled starting from a series of optical surface scans. A stochastic model is created to represent the measured manufacturing geometrical deviations from the nominal model. A data reduction methodology is proposed in order to represent the uncertainty with a minimal set of variables. The manufacturing geometrical variability model allows to represent the input uncertainty and probabilistically evaluate its impact on the aeroelastic problem. An uncertainty quantification is performed in order to evaluate the resulting variability on the modal forcing acting on the vibrating rotor blades. Of particular interest is the possible rise of low engine orders due to the mistuned flow field along the annulus. A reconstruction algorithm allows the representation of the variability during one rotor revolution. The uncertainty on low harmonics of the modal rotor forcing can be therefore identified and quantified.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Marco GambittaORCiD, Arnold Kühhorn, Bernd BeirowORCiD, Sven Schrape
DOI:https://doi.org/10.1115/1.4052602
ISSN:1528-8900
Title of the source (English):Journal of Turbomachinery
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2022
Tag:aeromechanical instabilities; computational fluid dynamics (CFD); turbomachinery blading design
Volume/Year:144
Article Number:4
Number of pages:10
Article number:041007
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Strukturmechanik und Fahrzeugschwingungen
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.