• search hit 1 of 1
Back to Result List

A comprehensive kinetic modeling of oxymethylene ethers (OMEn, n= 1–3) oxidation-laminar flame speed and ignition delay time measurements

  • This work reports on the development and experimental validation of a detailed reaction mechanism for the oxidation of polyoxymethylene dimethyl ethers (OMEn, n = 1–3). The validation is done by constant-volume chamber laminar flame speeds (393 K and 443 K, 1 to 5 bar, and equivalence ratio 0.8 to 1.6) and Rapid Compression Machine ignition delay times (550–680 K, 10 and 15 bar, equivalence ratios of 0.5–2.0) in OMEn/air mixtures. Using our new experimental and published data, the validation basis for the new kinetic model comprises the pyrolysis and oxidation of OMEn (n = 1–3) in freely propagating flames, auto-ignition in rapid compression machines and shock tubes, and speciation in jet-stirred and flow reactors as well as burner-stabilized premixed flames. The model provides a reasonable agreement with the experimental data for a broad range of conditions investigated. The performance of the developed model is compared against the recent literature models. OMEn (n = 1–3) all have the same laminar flame speed. The model suggestsThis work reports on the development and experimental validation of a detailed reaction mechanism for the oxidation of polyoxymethylene dimethyl ethers (OMEn, n = 1–3). The validation is done by constant-volume chamber laminar flame speeds (393 K and 443 K, 1 to 5 bar, and equivalence ratio 0.8 to 1.6) and Rapid Compression Machine ignition delay times (550–680 K, 10 and 15 bar, equivalence ratios of 0.5–2.0) in OMEn/air mixtures. Using our new experimental and published data, the validation basis for the new kinetic model comprises the pyrolysis and oxidation of OMEn (n = 1–3) in freely propagating flames, auto-ignition in rapid compression machines and shock tubes, and speciation in jet-stirred and flow reactors as well as burner-stabilized premixed flames. The model provides a reasonable agreement with the experimental data for a broad range of conditions investigated. The performance of the developed model is compared against the recent literature models. OMEn (n = 1–3) all have the same laminar flame speed. The model suggests that the chemistry of OME0 (DME) and CH3OCHO (methyl formate) is the one that dictates the flame chemistry. Under the same pressure and equivalence ratio conditions, ignition delay times of OME2 and OME3 are similar for the investigated temperature range. This work helps to improve the understanding of OMEs chemistry. The model developed in this work will serve as the base mechanism for higher chain length OMEs (n>3).show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Krishna Prasad ShresthaORCiD, Sven Eckart, Simon Drost, Chris Fritsche, Robert Schießl, Lars SeidelORCiD, Ulrich Maas, Hartmut Krause, Fabian MaußORCiD
DOI:https://doi.org/10.1016/j.combustflame.2022.112426
ISSN:1556-2921
ISSN:0010-2180
Title of the source (English):Combustion and Flame
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2022
Volume/Year:246
Article number:112426
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Thermodynamik / Thermische Verfahrenstechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.