• search hit 34 of 54
Back to Result List

Using Hips As a New Mixing Model to Study Differential Diffusion of Scalar Mixing in Turbulent Flows

  • Mixing two or more streams is ubiquitous in chemical processes and industries involving turbulent liquid or gaseous flows. Modeling turbulent mixing flows is complicated due to a wide range of time and length scales, and non-linear processes, especially when reaction is involved. On the other hand, in turbulent reacting flows, sub-grid scales need to be resolved accurately because they involve reactive and diffusive transport processes. Transported PDF methods use mixing models to capture the interaction in the sub-grid scales. Several models have been used with varying success. In this study, we present a novel model for simulation of turbulent mixing called Hierarchical Parcel Swapping (HiPS). The HiPS model is a stochastic mixing model that resolves a full range of time and length scales with the reduction in the complexity of modeling turbulent reacting flows. This model can be used as a sub-grid mixing model in PDF transport methods, as well as a standalone model. HiPS can be applied to transported scalars with variable SchmidtMixing two or more streams is ubiquitous in chemical processes and industries involving turbulent liquid or gaseous flows. Modeling turbulent mixing flows is complicated due to a wide range of time and length scales, and non-linear processes, especially when reaction is involved. On the other hand, in turbulent reacting flows, sub-grid scales need to be resolved accurately because they involve reactive and diffusive transport processes. Transported PDF methods use mixing models to capture the interaction in the sub-grid scales. Several models have been used with varying success. In this study, we present a novel model for simulation of turbulent mixing called Hierarchical Parcel Swapping (HiPS). The HiPS model is a stochastic mixing model that resolves a full range of time and length scales with the reduction in the complexity of modeling turbulent reacting flows. This model can be used as a sub-grid mixing model in PDF transport methods, as well as a standalone model. HiPS can be applied to transported scalars with variable Schmidt numbers to capture the effect of differential diffusion which is important for modeling scalars with low diffusivity like soot. We present an overview of the HiPS model, its formulation for variable Schmidt number flows, and then present results for evaluating the turbulence properties including the scalar energy spectra, the scalar dissipation rate, and Richardson dispersion. These model developments are an important step in applying HiPS to more complex flow configurations.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Alan R. KersteinORCiD, David O. Lignell, Heiko SchmidtORCiD, Tommy StarickORCiD, Isaac Wheeler, Masoomeh Behrang
URL:https://plan.core-apps.com/aiche2021/event/002309c77cf108fff1a6a8a101a07ebd
Title of the source (English):2021 AIChE Annual Meeting
Document Type:Conference publication not peer-reviewed
Language:English
Year of publication:2021
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Numerische Strömungs- und Gasdynamik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.