• search hit 8 of 22
Back to Result List

Forced Response Analysis of a Mistuned Compressor Blisk

  • The forced response of an E3E-type high pressure compressor (HPC) blisk front rotor is analyzed with regard to varying mistuning and the consideration of the fluid-structure interaction (FSI). For that purpose, a reduced order model is used in which the disk remains unchanged and mechanical properties of the blades, namely stiffness and damping, are adjusted to measured as well as intentional blade frequency mistuning distributions. The aerodynamic influence coefficient technique is employed to model the aeroelastics. Depending on the blade mode, the exciting engine order, and aerodynamic influences, it is sought for the worst mistuning distributions with respect to the maximum blade displacement based on optimization analyses. Genetic algorithms using blade-alone frequencies as design variables are applied. The validity of the Whitehead limit is assessed in this context. In particular, the question is addressed if and how far aeroelastic effects, mainly caused by aerodynamic damping, combined with mistuning can even cause a reductionThe forced response of an E3E-type high pressure compressor (HPC) blisk front rotor is analyzed with regard to varying mistuning and the consideration of the fluid-structure interaction (FSI). For that purpose, a reduced order model is used in which the disk remains unchanged and mechanical properties of the blades, namely stiffness and damping, are adjusted to measured as well as intentional blade frequency mistuning distributions. The aerodynamic influence coefficient technique is employed to model the aeroelastics. Depending on the blade mode, the exciting engine order, and aerodynamic influences, it is sought for the worst mistuning distributions with respect to the maximum blade displacement based on optimization analyses. Genetic algorithms using blade-alone frequencies as design variables are applied. The validity of the Whitehead limit is assessed in this context. In particular, the question is addressed if and how far aeroelastic effects, mainly caused by aerodynamic damping, combined with mistuning can even cause a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the interblade phase angle is the main driver for a possible response attenuation considering the fundamental as well as a higher blade mode. Furthermore, the differences to the blisk vibration response without a consideration of the flow and an increase of the disk's stiffness are discussed. Closing, the influence of pure damping mistuning is analyzed again using optimization.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Bernd BeirowORCiD, Thomas Giersch, Arnold Kühhorn, Jens Nipkau
DOI:https://doi.org/10.1115/1.4026537
ISSN:1528-8919
Title of the source (English):Journal of Engineering for Gas Turbines and Power
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2014
Tag:Blisk Otimization; Mistuning
Volume/Year:136
Issue number:6
Number of pages:13
Article number:062507
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Strukturmechanik und Fahrzeugschwingungen
Institution name at the time of publication:Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen (eBTU) / LS Strukturmechanik und Fahrzeugschwingungen
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.