• search hit 10 of 49
Back to Result List

Automatic disassembly and recycling of lithium-traction-accumulators

  • Within the next few years major changes in mobility are expected. Increasing numbers of electric powered cars, electrobikes and E-Scooters define the transport sector. Recently lithium based traction batteries as storage medium have led into matrurity of series production combining high electrical efficiencies with low weights and compact dimensions. Due to the relatively young development with lithium batteries utilization, only few investigation were conducted regarding their recycling. Conventional battery recycling processes can not be applied due to differences in design and chemistry. So an automated disassembly and processing procedure for lithium traction batteries has been developed in the R/D-project "Li-WERT". Instead of complete smelting of the batteries without pretreatment, an automated disassembly and specific treatment of the material streams was realised, adjusted to the needs of the subsequent recovery technologies. A higher quality, with reduced expenses for the separation of fine-grained or fused material mixes,Within the next few years major changes in mobility are expected. Increasing numbers of electric powered cars, electrobikes and E-Scooters define the transport sector. Recently lithium based traction batteries as storage medium have led into matrurity of series production combining high electrical efficiencies with low weights and compact dimensions. Due to the relatively young development with lithium batteries utilization, only few investigation were conducted regarding their recycling. Conventional battery recycling processes can not be applied due to differences in design and chemistry. So an automated disassembly and processing procedure for lithium traction batteries has been developed in the R/D-project "Li-WERT". Instead of complete smelting of the batteries without pretreatment, an automated disassembly and specific treatment of the material streams was realised, adjusted to the needs of the subsequent recovery technologies. A higher quality, with reduced expenses for the separation of fine-grained or fused material mixes, can be obtained for the individual components. The automated disassembly using an industrial robot significantly reduces dangers for the operating crew. The selective disassembly and beneficiation allows full recovery of the fractions. The batteries will be disassembled to cell level by the industrial robot. Anodes, cathodes, and separation layers are isolated and processed. The technology is designed, that no waste is generated for disposal. The pelletised cathode coating and the other separated metals (stainless steel, copper, aluminum) can be used in respective metallurgical plants. Circuit boards and plug contacts are also coveted secondary raw materials for reuse. The process is modular and offers high flexibility, e. g. for new battery types/ sizes by quick adjustment of the robot and tool change. Adaptation to other cathode materials (e. g. Li[FePO]) is possible. After finishing the R/D-project, a pilot plant for demontage was realised in 2013.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Jens Markowski, Satyanarayana Narra, Peter Ay, Harry Pempel, Mike Müller
Title of the source (English):Proceedings, XXVII. IMPC, Santiago de Chile, 2014
Publisher:GECAMIN
Place of publication:Santiago de Chile
Document Type:Conference Proceeding
Language:English
Year of publication:2014
Tag:dismantling; lithium traction accumulator; recycling
First Page:227
Last Page:236
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Aufbereitungstechnik und Sekundärrohstofftechnologie (ehemals)
Institution name at the time of publication:Fakultät für Umweltwissenschaften und Verfahrenstechnik (eBTU) / LS Aufbereitungstechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.