• search hit 7 of 22
Back to Result List

Amorphous Gadolinium Aluminate as a Dielectric and Sulfur for Indium Phosphide Passivation

  • The passivation of n-type InP (100) using sulfur in combination with a gadolinium aluminate (GAO) dielectric layer has been studied. Photoluminescence, minority-carrier lifetime, and capacitance−voltage measurements indicate that a (NH4)2S vapor passivation step prior to atomic layer deposition of the oxide effectively lowers the interface state density. Surface and interface chemistry were studied by synchrotron radiation photoemission spectroscopy (SRPES). The effect of ex situ surface passivation after native oxide removal in HCl solution was examined. It was observed that surface reoxidation occurred during (NH4)2S vapor exposure, leading to the formation of Inx(HPO4)y. S was present on the surface as a sulfide in both surface and subsurface sites. After atomic layer deposition of GAO, sulfates were detected in addition to Inx(HPO4)y, which was confirmed by near-edge X-ray absorptionfine structure analysis. The S in the stack was quantified using reference-free grazing incidence X-rayfluorescence analysis. X-ray absorptionThe passivation of n-type InP (100) using sulfur in combination with a gadolinium aluminate (GAO) dielectric layer has been studied. Photoluminescence, minority-carrier lifetime, and capacitance−voltage measurements indicate that a (NH4)2S vapor passivation step prior to atomic layer deposition of the oxide effectively lowers the interface state density. Surface and interface chemistry were studied by synchrotron radiation photoemission spectroscopy (SRPES). The effect of ex situ surface passivation after native oxide removal in HCl solution was examined. It was observed that surface reoxidation occurred during (NH4)2S vapor exposure, leading to the formation of Inx(HPO4)y. S was present on the surface as a sulfide in both surface and subsurface sites. After atomic layer deposition of GAO, sulfates were detected in addition to Inx(HPO4)y, which was confirmed by near-edge X-ray absorptionfine structure analysis. The S in the stack was quantified using reference-free grazing incidence X-rayfluorescence analysis. X-ray absorption spectroscopy showed that Gd was oxidized and present in the 3+ oxidation state, most likely as a phosphate close to the InP interface and possibly mixed with sulfates. Energy-dependent SRPES measurements of Al 2p and Gd 4d core levels, complemented by transmission electron microscopy, further suggest that the dielectric layer was segregated. Valence band measurements confirm the effective passivation of InP, indicating unpinning of the surface Fermi level.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Dennis H. von DorpORCiD, Laura Nyns, Daniel Cuypers, Tsvetan Ivanov, Simone Brizzi, Massimo TallaridaORCiD, Claudia Fleischmann, Philipp Hönicke, Matthias Müller, Olivier Richard, Dieter SchmeißerORCiD, Stefan De Gendt, Dennis H. C. Lin, Christoph AdelmannORCiD
DOI:https://doi.org/10.1021/acsaelm.9b00388
ISSN:2637-6113
Title of the source (English):ACS Applied Electronic Materials
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2019
Tag:III−V; InP; atomic layer deposition; dielectric; gadolinium aluminate; rare earth oxide; sulfur passivation
Volume/Year:1
Issue number:11
First Page:2190
Last Page:2201
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.