• search hit 2 of 92
Back to Result List

Multifunctional crosslinkable itaconic acid copolymers for enzyme immobilization

  • UV-Crosslinkable itaconic copolymers are developed to provide new multifunctional materials for coatings which combine crosslinkable functionalities and the possibility to immobilize enzymes. The polymer-immobilized enzymes were used for water treatment to decompose persistent organic molecules. Introduction of suitable comonomers allows tailoring the mechanical and chemical properties for special applications. Copolymers containing MMA and itaconic anhydride were chosen because of the formation of long-term stable anhydride functionalities. These anhydride functionalities are employed to attach enzymes covalently. 4-Benzoylphenyl methacrylate is used as comonomer for UV-initiated crosslinking. Terpolymers are successfully obtained by radical copolymerization in solution. The copolymers are compared to poly(ethylene-alt-maleic anhydride) [P(EMA)] often used with respect to enzyme immobilization, activity and hydrolytic stability. The hydrolysis stability of the copolymers against water is studied by ATR-FTIR spectroscopy. Thin filmsUV-Crosslinkable itaconic copolymers are developed to provide new multifunctional materials for coatings which combine crosslinkable functionalities and the possibility to immobilize enzymes. The polymer-immobilized enzymes were used for water treatment to decompose persistent organic molecules. Introduction of suitable comonomers allows tailoring the mechanical and chemical properties for special applications. Copolymers containing MMA and itaconic anhydride were chosen because of the formation of long-term stable anhydride functionalities. These anhydride functionalities are employed to attach enzymes covalently. 4-Benzoylphenyl methacrylate is used as comonomer for UV-initiated crosslinking. Terpolymers are successfully obtained by radical copolymerization in solution. The copolymers are compared to poly(ethylene-alt-maleic anhydride) [P(EMA)] often used with respect to enzyme immobilization, activity and hydrolytic stability. The hydrolysis stability of the copolymers against water is studied by ATR-FTIR spectroscopy. Thin films are prepared on glass substrates in a layer-by-layer procedure by spin-coating. The layer formation is monitored by ATR-FTIR spectroscopy. UV-crosslinking of the copolymer films is performed taking the optimal irradiation dose that avoids polymer degradation. ATR-FTIR spectroscopy verifies the coupling reaction between amino groups of the enzyme and the anhydride groups on the surface of the crosslinked polymer film. The syringaldazine (4-hydroxy-3,5-dimethoxybenzaldehyde azine) test and 2,2´-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay demonstrate that the immobilized enzymes maintain their activities. The functional copolymers showed a significant effect in reduction of persistent organic pollutants in contaminated waste water.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Felix Müller, Bernhard Torger, Peter J. Allertz, Klaus Jähnichen, Stefan Keßler, Martin Müller, Frank Simon, Katrin Salchert, Haike Mäurer, Doris Pospiech
DOI:https://doi.org/10.1016/j.eurpolymj.2018.03.014
Title of the source (English):European Polymer Journal
Document Type:Scientific journal article peer-reviewed
Language:German
Year of publication:2018
Tag:ATR-FTIR spectroscopy; Crosslinking; Enzyme-immobilization; Itaconc acid; Methacrylate copolymer
Volume/Year:102
First Page:47
Last Page:55
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Naturstoffchemie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.