• search hit 13 of 13
Back to Result List

Sustainability and Circular Economy in Carbon Fiber-Reinforced Plastics

  • Carbon fiber-reinforced plastic (CFRP) components are known for their exceptional resilience and ultra-lightweight nature, making them the preferred choice for applications requiring high mechanical loads with minimal weight. However, the intricate and anisotropic structure of CFRP components poses challenges, resulting in expensive repairs and testing. This complexity also leads to increased waste generation. Yet, innovative recycling processes offer a solution by reintegrating carbon components into a closed material cycle, promoting sustainability and circular economy principles. This work focuses on recycled CFs (rCFs) obtained through a continuous recycling method for CFRP primary recyclate from composite pressure vessel. Furthermore, re-purposing of the separated matrix material for secondary energy sources makes the process, a 100% recycling route. This closed-loop approach addresses conventional pyrolysis challenges and contributes to more efficient utilization of CFRP waste components. rCF and recycled polyethyleneCarbon fiber-reinforced plastic (CFRP) components are known for their exceptional resilience and ultra-lightweight nature, making them the preferred choice for applications requiring high mechanical loads with minimal weight. However, the intricate and anisotropic structure of CFRP components poses challenges, resulting in expensive repairs and testing. This complexity also leads to increased waste generation. Yet, innovative recycling processes offer a solution by reintegrating carbon components into a closed material cycle, promoting sustainability and circular economy principles. This work focuses on recycled CFs (rCFs) obtained through a continuous recycling method for CFRP primary recyclate from composite pressure vessel. Furthermore, re-purposing of the separated matrix material for secondary energy sources makes the process, a 100% recycling route. This closed-loop approach addresses conventional pyrolysis challenges and contributes to more efficient utilization of CFRP waste components. rCF and recycled polyethylene terephthalate (rPET) polymers were compounded through an extrusion process. Test specimens were then fabricated according to standard test norms to evaluate the resulting tensile and bending properties. The tensile and flexural modulus of the rCF-rPET obtained are 6.80 and 4.99 GPa, respectively. The need for enhancing the quality of rCF is apparent. Suggestive and potential implications and the marketability of rCF-rPET compounds are also discussed.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Azmin Nasrin HannanORCiD, Prof. Dr.-Ing. Holger SeidlitzORCiD, David Hartung, Felix KukeORCiD, Marcello Ambrosio, Marco Müller
DOI:https://doi.org/10.1007/s42824-024-00111-2
ISSN:2524-8146
Title of the source (English):Materials Circular Economy
Publisher:Springer Science and Business Media LLC
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2024
Tag:Carbon Fiber-Reinforced Plastics; Circular Economy; Sustainability
Volume/Year:6
Issue number:1
Number of pages:11
Article number:26
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Polymerbasierter Leichtbau
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.