• search hit 10 of 22
Back to Result List

Atomic layer deposition of HfO2 onto SiO2 substrates investigated in-situ by non-contact UHV/AFM

  • We investigated in-situ the atomic layer deposition (ALD) of HfO2 onto SiO2 substrates with ultra high vacuum (UHV) non-contact atomic force microscope (NC-AFM). The ALD process was started after detailed analysis of the initial Si(001)/SiO2 substrate. The ALD cycles, made by using tetrakis-di-methyl-amido-Hf (TDMAHf) and water as precursors, were performed on the SiO2 substrate maintained at 230 ∘C. We studied the relation between the film growth and the root mean square surface roughness, surface skewness, kurtosis, fractal dimension and correlation length. In the initial stages of the ALD process with our analysis of the surface height histograms we were capable of determination: HfO2 layer thickness, surface coverage and surface roughness of a substrate and deposited material. Observation of the surface height histograms evolution during deposition allowed us to verify conformal and effective ALD growth on SiO2 substrate. With this detailed analysis of the surface topography we confirmed the completion of the first HfO2 layerWe investigated in-situ the atomic layer deposition (ALD) of HfO2 onto SiO2 substrates with ultra high vacuum (UHV) non-contact atomic force microscope (NC-AFM). The ALD process was started after detailed analysis of the initial Si(001)/SiO2 substrate. The ALD cycles, made by using tetrakis-di-methyl-amido-Hf (TDMAHf) and water as precursors, were performed on the SiO2 substrate maintained at 230 ∘C. We studied the relation between the film growth and the root mean square surface roughness, surface skewness, kurtosis, fractal dimension and correlation length. In the initial stages of the ALD process with our analysis of the surface height histograms we were capable of determination: HfO2 layer thickness, surface coverage and surface roughness of a substrate and deposited material. Observation of the surface height histograms evolution during deposition allowed us to verify conformal and effective ALD growth on SiO2 substrate. With this detailed analysis of the surface topography we confirmed the completion of the first HfO2 layer after four ALD cycles.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Krzysztof Kolanek, Konstantin Karavaev, Massimo TallaridaORCiD, Dieter SchmeißerORCiD
ISSN:0420-0195
Title of the source (German):Verhandlungen der Deutschen Physikalischen Gesellschaft, Reihe 6, Bd. 45
Publisher:Deutsche Physikalische Gesellschaft
Place of publication:Bad Honnef
Document Type:Conference Proceeding
Language:English
Year of publication:2010
First Page:S. 248
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Angewandte Physik / Sensorik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.