• search hit 7 of 8
Back to Result List

Investigation of Two-Phase Flow Characteristics in a Fractal-Branching Microchannel

  • Inspiration from nature to solve advanced engineering problems has attracted the interests of engineers, designers and scientists. Biomimetics is to imitate and apply the elements, systems and mechanisms from nature to solve technological challenges as stated by Gleich et al. (2009). They also added that one of nature’s solution which is being explored is fractal shapes. Fractal shapes appeared in a variety of cases such as snowflakes, blood vessels and plant root systems in nature. Fractal shapes consistently appear in situations which require mass or heat transfer throughout a large space. The optimal spreading and transfer throughout the space characteristics of fractal shapes, making them a practical solution to design more efficient heat and mass transfer devices. Fractal shapes were first employed to improve fluid mechanics designs by West et al. (1997) to minimise the workflow for bulk fluid transportation through a network of branching tubes. On the other hand, two-phase flow in microscale channels has greatInspiration from nature to solve advanced engineering problems has attracted the interests of engineers, designers and scientists. Biomimetics is to imitate and apply the elements, systems and mechanisms from nature to solve technological challenges as stated by Gleich et al. (2009). They also added that one of nature’s solution which is being explored is fractal shapes. Fractal shapes appeared in a variety of cases such as snowflakes, blood vessels and plant root systems in nature. Fractal shapes consistently appear in situations which require mass or heat transfer throughout a large space. The optimal spreading and transfer throughout the space characteristics of fractal shapes, making them a practical solution to design more efficient heat and mass transfer devices. Fractal shapes were first employed to improve fluid mechanics designs by West et al. (1997) to minimise the workflow for bulk fluid transportation through a network of branching tubes. On the other hand, two-phase flow in microscale channels has great applicability due to its diverse range of applications. As expressed by Serizawa et al. (2002), modern and advanced technologies such as micro-electro-mechanical systems, chemical process engineering, medical engineering and electronic cooling utilise multiphase flow in microchannels. This work aims to investigate the application of nature-inspired fractal geometries as multiphase microscale flow passage using CFD analysis. ANSYS Fluent software has been utilised to investigate the flow characteristics numerically in order to improve the pressure drop and heat transfer. Also, this question will be raised whether two-phase flow patterns in fractal microchannels are different from straight channels or not.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Sahar Hajizeinalibioki, Daniel Sebastia-Saez, Oleksiy Klymenko, Harvey Arellano-GarciaORCiD
URL:https://aiche.confex.com/aiche/2019/meetingapp.cgi/Paper/577654
ISBN:978-0-8169-1112-7
Title of the source (English):AIChE Annual Meeting, November 10, 2019 to November 15, 2019
Document Type:Conference publication peer-reviewed
Language:English
Year of publication:2019
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Prozess- und Anlagentechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.