• search hit 5 of 6
Back to Result List

The effect of base chemistry choice in a generated n‐hexane oxidation model using an automated mechanism generator

  • The present study describes the utilization of a reaction mechanism generator for the development of chemical kinetic models. The aim of the investigation is twofold. The in-house developed mechanism generator is updated with reaction classes reported in the literature, and the effect of the lower hydrocarbon chemistry, that is, base chemistry, on the generation process is assessed. For this purpose, the algorithm is implemented on two different base chemistry mechanisms, that have previously been validated against a different range of hydrocarbons, that is, the mechanisms of the groups coauthoring the study. n-Hexane has been used as a modeling target due to its important role in combustion studies as a surrogate for engine and aviation applications. The steps of the generation process are given in detail as this is the first time the current algorithm is utilized. The two generated mechanisms are compared against speciation data, ignition delay times, and flame velocities from the literature. The overall agreement of the generatedThe present study describes the utilization of a reaction mechanism generator for the development of chemical kinetic models. The aim of the investigation is twofold. The in-house developed mechanism generator is updated with reaction classes reported in the literature, and the effect of the lower hydrocarbon chemistry, that is, base chemistry, on the generation process is assessed. For this purpose, the algorithm is implemented on two different base chemistry mechanisms, that have previously been validated against a different range of hydrocarbons, that is, the mechanisms of the groups coauthoring the study. n-Hexane has been used as a modeling target due to its important role in combustion studies as a surrogate for engine and aviation applications. The steps of the generation process are given in detail as this is the first time the current algorithm is utilized. The two generated mechanisms are compared against speciation data, ignition delay times, and flame velocities from the literature. The overall agreement of the generated mechanisms is satisfying; discrepancies exist in the negative temperature coefficient regime. Reaction path analysis and sensitivity analysis were performed, revealing the reactions that cause the different mechanism performance. Among others, the study reveals that the generated schemes pose a fast and adequate alternative to literature mechanisms; it is however evident that the latter may include more detailed reaction paths and are therefore superior in terms of validation.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Martin Hilbig, Zisis Malliotakis, Lars SeidelORCiD, George Vourliotakis, Christos Keramiotis, Fabian MaußORCiD, Maria Founti
DOI:https://doi.org/10.1002/kin.21309
ISSN:1097-4601
ISSN:0538-8066
Title of the source (English):International Journal of Chemical Kinetics
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2019
Volume/Year:51
Issue number:10
First Page:786
Last Page:798
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Thermodynamik / Thermische Verfahrenstechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.