• search hit 12 of 36
Back to Result List

Effect of increasing salinity to adapted and non-adapted Anammox biofilms

  • The Anammox process is an efficient low energy alternative for the elimination of nitrogen from wastewater. The process is already in use for side stream applications. However, some industrial wastewaters, e.g. from textile industry are highly saline. This may be a limit for the application of the Anammox process. The aim of this study was to evaluate the effects of different NaCl concentrations on the efficiency of adapted and non-adapted Anammox biofilms. The tested NaCl concentrations ranged from 0 to 50 g NaCl*L⁻¹. Concentrations below 30 g NaCl*L⁻¹did not significantly result in different nitrogen removal rates between adapted and non-adapted bacteria. However, adapted bacteria were significantly more resilient to salt at higher concentrations (40 and 50g NaCl*L⁻¹). The IC50 for adapted and non-adapted Anammox bacteria were 19.99 and 20.30 g NaCl*L⁻¹, respectively. Whereas adapted biomass depletes the nitrogen in ratios of NO-₂/NH+₄ around 1.20 indicating a mainly Anammox-driven consumption of the nitrogen, the ratio increases toThe Anammox process is an efficient low energy alternative for the elimination of nitrogen from wastewater. The process is already in use for side stream applications. However, some industrial wastewaters, e.g. from textile industry are highly saline. This may be a limit for the application of the Anammox process. The aim of this study was to evaluate the effects of different NaCl concentrations on the efficiency of adapted and non-adapted Anammox biofilms. The tested NaCl concentrations ranged from 0 to 50 g NaCl*L⁻¹. Concentrations below 30 g NaCl*L⁻¹did not significantly result in different nitrogen removal rates between adapted and non-adapted bacteria. However, adapted bacteria were significantly more resilient to salt at higher concentrations (40 and 50g NaCl*L⁻¹). The IC50 for adapted and non-adapted Anammox bacteria were 19.99 and 20.30 g NaCl*L⁻¹, respectively. Whereas adapted biomass depletes the nitrogen in ratios of NO-₂/NH+₄ around 1.20 indicating a mainly Anammox-driven consumption of the nitrogen, the ratio increases to 2.21 at 40 g NaCl*L⁻¹ for non-adapted biomass. This indicates an increase of other processes like denitrification. At lower NaCL concentrations up to 10 g NaCl*L⁻¹, a stimulating effect of NaCl to the Anammox process has been observed.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Steffen Engelbrecht, Mohammad Mozooni, Kristina Rathsack, Jörg Böllmann, Marion MartienssenORCiD
DOI:https://doi.org/10.1080/09593330.2018.1455748
ISSN:0959-3330
ISSN:1479-487X
Title of the source (English):Environmental Technology
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2019
Tag:Adapted; Anammox; Biofilm; Non-adapted; Salinity
Volume/Year:40
Issue number:22
First Page:2880
Last Page:2888
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Biotechnologie der Wasseraufbereitung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.