• search hit 2 of 2
Back to Result List

Growth vulnerability of hybrid-poplar and black locust to prospective climatic changes

  • In Brandenburg, eastern Germany, prospective climate changes imply extreme weather events, increasing annual temperature, and decreasing summer precipitation. Since alley-cropping systems (ACS) have a broad planning horizon, appraising their sustainability and efficiency under changing climate conditions is crucial for forthcoming risk assessments and adaptation scenarios. Consequently, this combined experimental and simulation study investigated the growth vulnerability of poplar clone “Max I” (Populus nigra L. x P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) short rotation coppices in an ACS established in Brandenburg to a considerable spectrum of weather conditions and long term climate change, from 2015 to the end of 2054. The investigation employed (i) Yield-SAFE, a biophysical, process-based model to simulate the above-ground tree woody biomass and (ii) 100 realisations of the statistical regional climate model STAR 2K. In the most optimistic sequence of events pertaining to air temperature, precipitation, andIn Brandenburg, eastern Germany, prospective climate changes imply extreme weather events, increasing annual temperature, and decreasing summer precipitation. Since alley-cropping systems (ACS) have a broad planning horizon, appraising their sustainability and efficiency under changing climate conditions is crucial for forthcoming risk assessments and adaptation scenarios. Consequently, this combined experimental and simulation study investigated the growth vulnerability of poplar clone “Max I” (Populus nigra L. x P. maximowiczii Henry) and black locust (Robinia pseudoacacia L.) short rotation coppices in an ACS established in Brandenburg to a considerable spectrum of weather conditions and long term climate change, from 2015 to the end of 2054. The investigation employed (i) Yield-SAFE, a biophysical, process-based model to simulate the above-ground tree woody biomass and (ii) 100 realisations of the statistical regional climate model STAR 2K. In the most optimistic sequence of events pertaining to air temperature, precipitation, and global radiation, 35% more woody biomass would be achieved by poplar and 43% by black locust in the last period compared to the base period. Alternatively, in the most pessimistic circumstances, 54% less woody biomass would be rendered by poplar and 47% by black locust. Our findings corroborated the tree growth vulnerability to prospective climatic changes, particularly to changes in water availability.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Diana-Maria SesermanORCiD, Ina Pohle, Maik VesteORCiD, Dirk FreeseORCiD
URL:https://www.alphavisa.com/agroforestry/2019/documents/Agroforestry2019-Book-of-Abstract-v1.pdf
URL:https://agroforestry2019.cirad.fr/replay/book-of-abstracts
Title of the source (English):4th World Congress on Agroforestry: Strengthening links between science, society and policy. 20-22 May 2019, Montpellier, France
Document Type:Conference publication peer-reviewed
Language:English
Year of publication:2019
Tag:Climatic impacts, Poplar, Black locust, Biomass, Yield-SAFE
First Page:65
Last Page:65
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Bodenschutz und Rekultivierung
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.