• search hit 1 of 2
Back to Result List

Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence

  • Titanium nitride (TiN) is a complementary metal-oxide-semiconductor (CMOS) compatible material with large potential for the fabrication of plasmonic structures suited for device integration. However, the comparatively large optical losses can be detrimental for application. This work reports a CMOS compatible TiN nanohole array (NHA) on top of a multilayer stack for potential use in integrated refractive index sensing with high sensitivities at wavelengths between 800 and 1500 nm. The stack, consisting of the TiN NHA on a silicon dioxide (SiO2) layer with Si as substrate (TiN NHA/SiO2/Si), is prepared using an industrial CMOS compatible process. The TiN NHA/SiO2/Si shows Fano resonances in reflectance spectra under oblique excitation, which are well reproduced by simulation using both finite difference time domain (FDTD) and rigorous coupled-wave analysis (RCWA) methods. The sensitivities derived from spectroscopic characterizations increase with the increasing incident angle and match well with the simulated sensitivities. OurTitanium nitride (TiN) is a complementary metal-oxide-semiconductor (CMOS) compatible material with large potential for the fabrication of plasmonic structures suited for device integration. However, the comparatively large optical losses can be detrimental for application. This work reports a CMOS compatible TiN nanohole array (NHA) on top of a multilayer stack for potential use in integrated refractive index sensing with high sensitivities at wavelengths between 800 and 1500 nm. The stack, consisting of the TiN NHA on a silicon dioxide (SiO2) layer with Si as substrate (TiN NHA/SiO2/Si), is prepared using an industrial CMOS compatible process. The TiN NHA/SiO2/Si shows Fano resonances in reflectance spectra under oblique excitation, which are well reproduced by simulation using both finite difference time domain (FDTD) and rigorous coupled-wave analysis (RCWA) methods. The sensitivities derived from spectroscopic characterizations increase with the increasing incident angle and match well with the simulated sensitivities. Our systematic simulation-based investigation of the sensitivity of the TiN NHA/SiO2/Si stack under varied conditions reveals that very large sensitivities up to 2305 nm per refractive index unit (nm RIU−1) are predicted when the refractive index of superstrate is similar to that of the SiO2 layer. We analyze in detail how the interplay between plasmonic and photonic resonances such as surface plasmon polaritons (SPPs), localized surface plasmon resonances (LSPRs), Rayleigh Anomalies (RAs), and photonic microcavity modes (Fabry-Pérot resonances) contributes to this result. This work not only reveals the tunability of TiN nanostructures for plasmonic applications but also paves the way to explore efficient devices for sensing in broad conditions.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Weijia Han, Sebastian Reiter, Jon Schlipf, Christian Mai, Davide Spirito, Josmy Jose, Christian WengerORCiD, Inga Anita FischerORCiD
DOI:https://doi.org/10.1364/OE.481993
ISSN:1094-4087
Title of the source (English):Optics Express
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2023
Tag:Plasmonics; TiN
Volume/Year:31
Issue number:11
First Page:17389
Last Page:17407
Fundername (not EU):Deutsche Forschungsgemeinschaft (DFG) / Open-Access-Publikationskosten (2023 -2025) / 512881332
Fundername (not EU):Bundesministerium für Bildung und Forschung / 16ES1128K, 16ME0420K
Project number (not EU):16ME0420K
Way of publication:Open Access
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Experimentalphysik und funktionale Materialien
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.