• search hit 2 of 29
Back to Result List

Zr and Fe on Pt/CeO2-MOx/Al2O3 catalysts for WGS reaction

  • By evaluating the functional modifications induced by Zr and Fe as dopants in Pt/CeO2‐MOx/Al2O3 catalysts (M = Fe and Zr), the key features for improving water gas shift (WGS) performance for these systems have been addressed. Pt/ceria intrinsic WGS activity is often related to improved H2 surface dynamics, H2O absorption, retentions and dissociation capacities which are influenced greatly by the support nature. Two metals, iron and zirconia, were chosen as ceria dopants in this work, either in separate manner or combined. Iron incorporation resulted in CO‐redox properties and oxygen storage capacities (OSC) improvement but the formation of Ce‐Fe solid solutions did not offer any catalytic benefit, while the Zr incorporation influenced in a great manner surface electron densities and shows higher catalytic activity. When combined both metals showed an important synergy evidenced by 30% higher CO conversions and attributed to greater surface electron densities population and therefore absorption and activity. This work demonstratesBy evaluating the functional modifications induced by Zr and Fe as dopants in Pt/CeO2‐MOx/Al2O3 catalysts (M = Fe and Zr), the key features for improving water gas shift (WGS) performance for these systems have been addressed. Pt/ceria intrinsic WGS activity is often related to improved H2 surface dynamics, H2O absorption, retentions and dissociation capacities which are influenced greatly by the support nature. Two metals, iron and zirconia, were chosen as ceria dopants in this work, either in separate manner or combined. Iron incorporation resulted in CO‐redox properties and oxygen storage capacities (OSC) improvement but the formation of Ce‐Fe solid solutions did not offer any catalytic benefit, while the Zr incorporation influenced in a great manner surface electron densities and shows higher catalytic activity. When combined both metals showed an important synergy evidenced by 30% higher CO conversions and attributed to greater surface electron densities population and therefore absorption and activity. This work demonstrates that for Pt/ceria catalysts OSC enhancement does not necessarily imply a catalytic promotion.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Miriam González-CastañoORCiD, Svetlana Ivanova, Theophiles Ioanides, Miguel Angel Centeno, Harvey Arellano-GarciaORCiD, José Antonio Odriozola
DOI:https://doi.org/10.1002/er.6646
ISSN:1099-114X
Title of the source (English):International Journal of Energy Research
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2021
Tag:FE; H2-TPD; Pt/ceria catalysts; WGS reaction; WGS-TPSR; Zr; doped ceria
Number of pages:12
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Prozess- und Anlagentechnik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.