• search hit 10 of 25
Back to Result List

Root economics spectrum and construction costs in Mediterranean woody plants: the role of symbiotic associations and the environment

  • 1. Many studies have quantified the functional variation of fine root traits to un-derstand the overarching trade-off between maximizing resource acquisition or conservation (root economics spectrum [RES]). However, we know remarkably less on how plant strategies along the RES are actually constrained by the amount of photosynthates required to construct roots (i.e. construction costs, CC) or how below- ground interactions with symbiotic organisms modify root trait patterns and their relationships with CC.2. Our main aim was to quantify CC of fine roots (<2 mm) and their underlying compo-nents (carbon, minerals and organic nitrogen concentrations) in 60 Mediterranean woody species with contrasting symbiotic association types (ectomycorrhizas, ar-buscular and ericoid mycorrhizas and N-fixing bacteria). We examined (a) whether the covariation among fine root traits along the RES was related to the intrinsic cost of producing roots and whether this relationship was dependent on the type of root symbiosis; (b) whether the1. Many studies have quantified the functional variation of fine root traits to un-derstand the overarching trade-off between maximizing resource acquisition or conservation (root economics spectrum [RES]). However, we know remarkably less on how plant strategies along the RES are actually constrained by the amount of photosynthates required to construct roots (i.e. construction costs, CC) or how below- ground interactions with symbiotic organisms modify root trait patterns and their relationships with CC.2. Our main aim was to quantify CC of fine roots (<2 mm) and their underlying compo-nents (carbon, minerals and organic nitrogen concentrations) in 60 Mediterranean woody species with contrasting symbiotic association types (ectomycorrhizas, ar-buscular and ericoid mycorrhizas and N-fixing bacteria). We examined (a) whether the covariation among fine root traits along the RES was related to the intrinsic cost of producing roots and whether this relationship was dependent on the type of root symbiosis; (b) whether the relationship of each CC component with the RES was dependent on the type of root symbiosis and (c) whether soil water and nutrient availability determined differences in CC across sites.3. According to the RES hypothesis, fine root traits showed a main covariation trend (acquisition vs. conservation), defined by the first PCA axis, which also segregated species by their two main contrasting symbiotic types (arbuscular and ectomycor-rhizal). We found a positive relationship between root CC and the RES (i.e. PCA axis 1) and, interestingly, slopes differed among symbiotic types, in response to the different role of each specific CC component. In addition, independently of symbiotic type, root CC decreased linearly with soil nutrient availability and quad-ratically with plant water availability.4. Synthesis. Our study demonstrates that woody plants display different functional strategies in their root CC, related with their position on the RES, and that CC differ among symbiotic groups. The influence of the root CC components across species varied among symbiotic associations, pointing to a trade-off between structural and metabolic compounds. Root CC were also strongly modulated by soil resource availability (nutrients and water). This study highlights that root CC are fundamental to better understand below- ground resource-use strategies.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Enrique Garcia de la RivaORCiD, Iván PrietoORCiD, Teodoro MarañónORCiD, Ignacio Manuel Pérez-RamosORCiD, Manuel OlmoORCiD, Rafael VillarORCiD
DOI:https://doi.org/10.1111/1365-2745.13612
ISSN:1365-2745
Title of the source (English):Journal of Ecology
Document Type:Scientific journal article peer-reviewed
Language:English
Year of publication:2021
Tag:below-ground strategies; functional traits; mycorrhiza; resource gradient; rhizobium; root carbon; soil nutrient; specific root length
Volume/Year:109
Issue number:4
First Page:1873
Last Page:1885
Faculty/Chair:Fakultät 2 Umwelt und Naturwissenschaften / FG Ökologie
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.