• search hit 1 of 28
Back to Result List

A Semi-Unstructured Turbomachinery Meshing Library With Focus on Modeling of Specific Geometrical Features

  • Computational Fluid Dynamics is widely used for the analysis and the design of turbomachinery blade rows. A well established method is the application of semi-unstructured meshes, that uses a combination of structured meshes in the radial direction and unstructured meshes in the axial as well as the tangential direction. This takes advantage of the approximately two dimensional flow field through the blade rows, whereby a fine radial discretization, excepting the near wall region, is not necessary. Otherwise, it is possible to discretize particular regions, e.g. the leading and trailing edge regions, in the axial and tangential direction without generating unnecessary nodes in the far field. The meshing approach is based on the projection of a two dimensional unstructured mesh defined at a reference surface. Once, the two dimensional mesh is generated the projection is achieved by transfinite interpolation from the reference surface to further radial surfaces using a structured mesh. Due to the modeling of geometrical features,Computational Fluid Dynamics is widely used for the analysis and the design of turbomachinery blade rows. A well established method is the application of semi-unstructured meshes, that uses a combination of structured meshes in the radial direction and unstructured meshes in the axial as well as the tangential direction. This takes advantage of the approximately two dimensional flow field through the blade rows, whereby a fine radial discretization, excepting the near wall region, is not necessary. Otherwise, it is possible to discretize particular regions, e.g. the leading and trailing edge regions, in the axial and tangential direction without generating unnecessary nodes in the far field. The meshing approach is based on the projection of a two dimensional unstructured mesh defined at a reference surface. Once, the two dimensional mesh is generated the projection is achieved by transfinite interpolation from the reference surface to further radial surfaces using a structured mesh. Due to the modeling of geometrical features, especially fillets, advanced methods for the generation of structured meshes and mesh smoothing algorithms are required. The paper presents two different approaches for the generation of an appropriate structured mesh. The first is based on the solution of elliptic partial differential equations. The second approach is based on the split of the domain into fourteen appropriately arranged blocks. Furthermore, two smoothing methods for two dimensional unstructured meshes, a constrained Laplace smoothing and an optimization based approach, are presented. Regarding a more realistic representation of the geometry, methods for the modeling of cavities, variable clearance sizes and fillets are presented. Finally, a comparison of the smoothing techniques applied to a rotor passage is presented and the influence of chosen geometrical features on the flow solution is evaluated.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Marco Stelldinger, Thomas Giersch, Felix Figaschewsky, Arnold Kühhorn
URL:https://www.eccomas2016.org/proceedings/pdf/7554.pdf
Title of the source (English):ECCOMAS VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, June 5-10, 2016
Document Type:Conference Proceeding
Language:English
Year of publication:2016
Faculty/Chair:Fakultät 3 Maschinenbau, Elektro- und Energiesysteme / FG Strukturmechanik und Fahrzeugschwingungen
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.