• search hit 12 of 30
Back to Result List

Characterization of Chemical Bonding in Low-K Dielectric Materials for Interconnect Isolation: XAS and EELS Study

  • The use of low dielectric constant materials in the on-chip interconnect process reduces interconnect delay, power dissipation and crosstalk noise. In CVD deposited organo-silicate glass (OSG) the substitution of oxygen in SiO2 by methyl groups (-CH3) reduces the permittivity significantly (from 4.0 in SiO2 to 2.6-3.3 in the OSG). However, plasma processing removes C and H containing molecular groups. Therefore, compositional analysis and chemical bonding characterization of structured films with nanometer resolution is necessary. OSG thin films as-deposited and after plasma treatment are studied using XAS and EELS. In both techniques, the fine structure near the C1s edge allows to identify C-H, C-C, and C-O bonds. XAS spectra have been recorded for non-patterned films and EELS spectra for patterned structures. The chemical bonding is compared for as-deposited and plasma-treated low-k materials. The flu-orescence and the electron yield recorded while XAS measurement are compared. Examination of the C 1s near-edge structures revealThe use of low dielectric constant materials in the on-chip interconnect process reduces interconnect delay, power dissipation and crosstalk noise. In CVD deposited organo-silicate glass (OSG) the substitution of oxygen in SiO2 by methyl groups (-CH3) reduces the permittivity significantly (from 4.0 in SiO2 to 2.6-3.3 in the OSG). However, plasma processing removes C and H containing molecular groups. Therefore, compositional analysis and chemical bonding characterization of structured films with nanometer resolution is necessary. OSG thin films as-deposited and after plasma treatment are studied using XAS and EELS. In both techniques, the fine structure near the C1s edge allows to identify C-H, C-C, and C-O bonds. XAS spectra have been recorded for non-patterned films and EELS spectra for patterned structures. The chemical bonding is compared for as-deposited and plasma-treated low-k materials. The flu-orescence and the electron yield recorded while XAS measurement are compared. Examination of the C 1s near-edge structures reveal a mod-ified bonding of the remaining C atoms in the plasma-treated sample regions.show moreshow less

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author: Patrick Hoffmann, Dieter SchmeißerORCiD, Franz J. Himpsel, Hans-Jürgen Engelmann, Ehrenfried ZschechORCiD, Heiko Stegmann, Jonathan D. Denlinger
ISSN:0420-0195
Title of the source (German):Verhandlungen der Deutschen Physikalischen Gesellschaft ; Reihe 6, Bd. 41
Publisher:Deutsche Physikalische Gesellschaft
Place of publication:Bad Honnef
Document Type:Conference Proceeding
Language:English
Year of publication:2006
First Page:S. 156
Faculty/Chair:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Angewandte Physik und Halbleiterspektroskopie
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Angewandte Physik / Sensorik
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.